• Title/Summary/Keyword: Ring Forging

Search Result 72, Processing Time 0.023 seconds

Development of the Automobile Part for the Engine Oil Leakage Prevention by the Precise Cold Forging (정밀냉간단조에 의한 엔진오일 누수방지용 자동차부품 개발)

  • Kwon H. B.;Lee B. K.
    • Transactions of Materials Processing
    • /
    • v.14 no.8 s.80
    • /
    • pp.675-680
    • /
    • 2005
  • This study was aimed at the design of the dies for the automobile part for the engine oil leakage prevention using the computer simulation to shorten the period of production, on the basis of the process planning which was designed by the field experts. In the computer simulation,'eesy-2-form' of 2D FEM simulation package and 'eesy-DieOpt' have been used, which are the commercial process analysis and die design program. Through the simulation of 'eesy-2-form', we could know the propriety of the forming process, the inner pressure of the die and the suitable fitting pressure between the insert and the sleeve which was not showing any positive tangential stresses in the insert. Through the simulation of 'eesy-DieOpt', we could know the number of the stress ring, the diameter ratios, the stresses of the die, the shrink fitting tolerance and temperature in the condition of the already determined maximum outer die diameter of the multi-stage former. The validity of the die design using the computer simulation was analyzed by the experiments and the results were satisfactory. As the results of this study, the new and easy die design system for cold forging has been developed.

Development of the hot ring rolling processes for multilayered ring parts with a large outer diameter (외경이 큰 환형 부품의 다중형상 열간 링 롤링 공정의 개발)

  • Kim, Kyung-Ryool;Kim, Young-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.952-962
    • /
    • 2015
  • In this study, multilayered rings with a large outer diameter have been developed using a hot ring rolling process. The ring rolling process has been analyzed by rigid plastic finite element analyses (FEA) using the AFDEX2D and AFDEX3D/HEXA/RING simulators, where the finite element meshes received severe plastic deformation are remeshed into a fine mesh-size using a dual-mesh system. According to the simulated results, the design variables of the multilayered rings were determined and real tests were conducted to check the validity of the simulation results. By adopting the hot ring rolling process, the input weight of raw materials was reduced by 40% against the conventional hot forging process and that the recovery rate was increased by 24%. The measurement of the averaged roundness was satisfied within 0.5 mm for both the inner and outer diameters. Moreover, the hot ring rolling processes yielded 1.49 Cpk for the outer-diameter and 0.84 Cpk 0.84 for the inner-diameter.

베어링레이스의 온간성형에있어서 공정개선 및 UBST 해석

  • 김영호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.171-177
    • /
    • 1995
  • In this paper, the deformation method for inner and outer races of rollr-bearing bymeans of the warm precision forging is investigated. We adapted the process designsuch as following that, toincrease Die life, reduce heat transfer through conduction and the eccentricity of preform in warm forging of bearing gace, the bottom portion of billet is formed during upsetting process. Then it is backward extruded, and thus obtained ring preform is formed by combined extrusion. Also, we compared it with the froming method in China and Japan, and we have known it is more excellent method. Basides, this forming method is simulated by UBST which is based on the merits of UBET nd FEM. The results show that it is easy to know the exact location of neutral surface through the inspection of streamline during combined extrusion, and the velocity vector distribution along the surface of velocity discontinuity is investigationed. Also the effectiveness of this method is proved by te experiment using model material that is Plasticine.

  • PDF

Determination of Constant Friction Factor and Forming Characteristics of Sintered Porous Metal (소결금속 의 성형 특성 및 마찰 상수 결정 에 관한 연구)

  • 오흥국;문재호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.2
    • /
    • pp.111-118
    • /
    • 1984
  • On the basis of plasticity theory for porous metal, an analysis of ring compression is carried out, employing the upper bound approach. The plastic flowability and the neutral radius of porous metal ring are calculated and deformation characteristics of power forging are obtained from this result. The experiments on ring compression are carried out for sintered iron porous metal with various relative densities under various friction conditions. A good agreement is observed between the shapes of the calculated curves and the experimental results from the ring compression test. The friction factor for powder metal forming can be determined not only from the relationship between reduction in height and reduction in internal diameter but independently from the relationship between reduction in height and relative density, if the initial relative density is known.

Fabrication of a sterling silver ring with folding process (폴딩 기법을 이용한 스털링실버 링 제조 공정)

  • Kim, Ik gyu;Kim, Kwangbae;Kim, Eun-Seok;Song, Ohsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.382-389
    • /
    • 2019
  • A novel folding process is proposed using a repeated cold-die forging and annealing to form a sterling silver ring. Sterling silver plate was cut into a doughnut shape, and lattices with 0.43-mm line-width were imprinted on it. The sample was folded by forging using dies with slopes of $45^{\circ}$, $60^{\circ}$, and $75^{\circ}$ and annealing. For comparison, samples were also fabricated without annealing. Strain was identified by measuring the length of lattices. Vernier calipers, a Vickers hardness tester, an optical microscope, and a UV-VIS colorimeter were used to determine the size, hardness, microstructure, and body color. Without annealing, cracks occurred. However, successful deformation was possible when annealing was used. The results of macro strain measurements show that the outer diameter and width decreased, while the inner diameter and thickness increased after the final process. The maximum strain was increased 0.128 toward the parallel direction. The Vickers hardness decreased after annealing and increased after the folding process. The microstructure results showed that the grain size increased after annealing but decreased after folding. The color difference based on the Lab index was under 10 for all processes. Eventually, a doughnut-shaped silver plate was successfully deformed into a ring shape by the folding process.

Microstructures and Mechanical Properties of Extruded Al 7050 Billet and Ring Forged One with Large Scale

  • Bae, Dong-Su;Joo, Kyung-Hwan;Lee, Jin-Kyung;Lee, Sang-Pill;Chang, Chang-Beom;Hong, Sung-Seop;Park, Tae-Won
    • Journal of Power System Engineering
    • /
    • v.20 no.6
    • /
    • pp.40-45
    • /
    • 2016
  • The manufacturing process of large scaled Al 7050 alloy is difficult for the occurrence of solidification crack during casting. The aims of this study are the evaluations of microstructure and mechanical properties of extruded Al 7050 billet and ring forged one with large scale. Large scaled Al 7050 billet was casted by direct-chill casting process. The extruded and ring forged specimens were prepared from the casted ingot after residual stress relief and homogenization heat treatment, respectively. Microstructures, hardness and tensile test of the surface, middle and center part of each specimen were performed at room temperature. Sheared and elongated type grains were observed at the edge parts of surface and center area and its aspect ratios of grains were low and similar as 0.21 while that of middle area was closed to 0.92 value in ring forged Al 7050 alloy. The mechanical properties of extruded Al 7050 alloy were superior than those of ring forged one. The hardness values of surface and center part were slightly higher than that of middle part in ring forged Al 7050 alloy.

Comparative Study on Mechanical Properties of forged and Machined Bushings for an Excavator Track Chain (굴삭기용 트랙체인 부품인 부설의 열간단조품과 절삭품의 기계적 성질 비교 분석)

  • Jang, S.M.;Jang, S.J.;Kim, H.T.;Joun, M.S.;Lee, H.M.;Choi, J.W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.410-413
    • /
    • 2008
  • In this study, we compare the mechanical properties of forged and machined bushings for an excavator track chain. The manufacturing process is explained in detail together with the procedure of making the specimens. The longitudinal tensile strength and elongation and the radial ring compression strength are measured for this comparison. It has been shown that the forged is much better than the machined with regard to both longitudinal tensile strength and radial ring compression strength but that both are the same in terms of longitudinal elongation.

  • PDF

The Effect of Isothermal Annealing on Microstructure of Forged Parts (단조품의 등온 어닐링에 따른 미세조직 변화)

  • Kim, D.B.;Lee, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.5
    • /
    • pp.303-308
    • /
    • 2000
  • The ring gears of automobile parts are manufactured generally process chart of which is as follows : forging ${\rightarrow}$ annealing or normalizing ${\rightarrow}$ rough machining ${\rightarrow}$ hardening(Quenching-Tempering or carburizing process) ${\rightarrow}$ finish machining. Isothermal annealing process after forging is most effective in the side of improvment of machinability. On this study we selected two kinds of steel;SCM415, SCM435 of most universal and investigated microstructures to find out most suitable condition of heat treatment in proportion continuous cooling and isothermal annealing. As the cooling rate is $5^{\circ}C$ per minute in continuous cooling process, martensite and bainite are coexisted with ferrite and pearlite in SCM435 steel. If the cooling rate is slower than $5^{\circ}C$ per minute, microstructure were only ferrite and pearlite but formation of band structure can't be avoid. On the other hand, microstructure is only ferrite and pearlite regardless of cooling rate because carbon content of SCM415 steel is low. Moreover formation of band structure isn't exposed by faster cooling rate. Most optimal temperature of the isothermal annealing is from $650^{\circ}C$ to $680^{\circ}C$ in SCM435 steel. When holding time is 60 minute with $650^{\circ}C$, the identical ferrite and pearlite microstructures can be obtained.

  • PDF

Hourglass Control in Rigid-Plastic Finite Element Analysis (강소성 유한요소해석에서 Hourglass Control)

  • Gang, Jeong-Jin;O, Su-Ik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1290-1300
    • /
    • 1996
  • The finite element method, based on rigid-plastic formulation, is widely used to simulate metal forming processes. In order to improve the computational efficiency of the rigid-plastic FEM, one-point integration is used to evaluate the stiffness matrix with four-node rectangular elements and eight-node brick elements. In order to control the hourglass modes, hourglass strain rate components were introduced and included in the effective strain rate definition, Numerical tests have shown that the proposed one-point integration scheme reduces the stiffness matrix evaluation time without deteriorating the convergence behavior of Newton-Raphson method. Simulations of a ring compression, a plane-strain closed-die forging and the three-dimensional spike forging processes were carried out by using the proposed integration method. The simulation results are compared to those obtained by applying the conventional integraiton method in terms of the solution accuracy and computational efficiency.

Metallurgical Characteristics and Manufacturing Techniques of Ring-Pommel Swords Excavated from Ancient Tombs in Hadae, Ulsan (울산 하대고분 출토 민고리자루칼의 재질 특성과 환두부 제작 방법)

  • Jo, Ha Nui;Kim, Han Seul;You, Ha Rim;Lee, Jae Sung
    • Journal of Conservation Science
    • /
    • v.36 no.3
    • /
    • pp.197-212
    • /
    • 2020
  • This study analyzed the microstructure of ring-pommel swords, excavated from Ancient Tombs, Hadae, Ulsan and examined their production technique, using non-destructive testing and a metallurgical method. The results confirmed that the five ring-pommel swords, unearthed in Ancient Tombs, Hadae, Ulsan, as identified by radiographic non-destructive testing, had been solely manufactured using iron, through forging based on the single-piece technique. Furthermore, these results were compared with previous studies, and the manufacturing techniques of single-piece ring-pommel swords were categorized into three types: pure iron - changing the shape, pure iron - changing the shape - carburization, and steel - changing the shape - quenching. The ring-pommels of four swords had around 0.7% of carbon content, which is as much as for eutectoid steel and higher than for other parts of these swords, such as the backs of their blades and handles. The weapon function of a small ring-pommel sword, under 60cm in length, was maximized by quenching focusing on its blade. Conversely, the martensite quenching structure was not observed in four ring-pommel swords shorter than 75cm. In other words, the same types of single-piece ring-pommel swords(late in 2C~early in 4C) were unearthed from Ancient Tombs, Hadae, and the group who has manufactured these swords is presumed to have limited their effectiveness, functionally depending on purposes, through an iron-making process and heat-treatment techniques.