• Title/Summary/Keyword: Rijke형 연소기

Search Result 2, Processing Time 0.016 seconds

Active Control of Thermoacoustic Instability in Cylindrical Combustor with Low Speed Flow Field (저속 유동장이 있는 원통형 연소기에서의 열-음향학적 불안정에 대한 능동 제어 연구)

  • 조상연;이용석;이수갑;배충식
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.914-921
    • /
    • 1998
  • Combusion instability due to thermoacoustic feedback in a ducted combustor usually excites severe noise and vibration, which could lead to result in the failure of the system or environmental dispute. In the present study, an active noise control(ANC) method with an adaptive algotithm is hired to suppress instability which has very discrete behavior in the frequency domain. Especially a feedback system is composed to evade hot environment of the combustor, and as a preliminary, the performance and stability of the controller is chekced by simulating the real situation with harmonic waves. Application to the real combustor showed serious reductions in sound pressure level by 20∼30 dB. It was also shown that the selected control system was very stable and effective.

  • PDF

A study on the pulsating combustion of coal in a Rijke type combustor (Rijke형 연소기에서 석탄의 맥동연소에 관한 연구)

  • 권영필;이동훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.508-516
    • /
    • 1989
  • The objective of this study is to investigate on the pulsating combustion of a granular coal in a Rijke type pulse combustor. The combustor is made of a 120cm long pipe with a honeycomb as a fire grate in the lower half. A fixed amount of coal is laid on the honeycomb and burned downward after ignition by using propane gas. Then the combustion driven acoustic oscillation occurs and makes the combustion pulsate with a very high amplitude. The effect of the pulsation and the air flow rate on the combustion characteristics is examined in comparison with the normal combustion. The non-pulsating combustion is made possible by placing absorbing material under the honeycomb. The combustion phenomena are observed visually, the burning time is measured in order to evaluate the combustion rate, and the variation of the gas temperatures is recorded. It is found that the fuel particle is greatly agitated like boiling by the flow pulsation and the burning-down velocity is so fast that the fuel is burned almost simultaneously. The combustion rate can be increased as twice as that of non-pulsating combustion with increase of the air flow rate. And the combustion becomes clean with less soot deposit and emission.