• Title/Summary/Keyword: Rigidity analysis

Search Result 576, Processing Time 0.023 seconds

Static performance of a new GFRP-metal string truss bridge subjected to unsymmetrical loads

  • Zhang, Dongdong;Yuan, Jiaxin;Zhao, Qilin;Li, Feng;Gao, Yifeng;Zhu, Ruijie;Zhao, Zhiqin
    • Steel and Composite Structures
    • /
    • v.35 no.5
    • /
    • pp.641-657
    • /
    • 2020
  • A unique lightweight string truss deployable bridge assembled by thin-walled fiber reinforced polymer (FRP) and metal profiles was designed for emergency applications. As a new structure, investigations into the static structural performance under the serviceability limit state are desired for examining the structural integrity of the developed bridge when subjected to unsymmetrical loadings characterized by combined torsion and bending. In this study, a full-scale experimental inspection was conducted on a fabricated bridge, and the combined flexural-torsional behavior was examined in terms of displacement and strains. The experimental structure showed favorable strength and rigidity performances to function as deployable bridge under unsymmetrical loading conditions and should be designed in accordance with the stiffness criterion, the same as that under symmetrical loads. In addition, a finite element model (FEM) with a simple modeling process, which considered the multi segments of the FRP members and realistic nodal stiffness of the complex unique hybrid nodal joints, was constructed and compared against experiments, demonstrating good agreement. A FEM-based numerical analysis was thereafter performed to explore the effect of the change in elastic modulus of different FRP elements on the static deformation of the bridge. The results confirmed that the change in elastic modulus of different types of FRP element members caused remarkable differences on the bending and torsional stiffness of the hybrid bridge. The global stiffness of such a unique bridge can be significantly enhanced by redesigning the critical lower string pull bars using designable FRP profiles with high elastic modulus.

Analysis of Squash & Stretch Principle for Animation Action (애니메이션 동작을 위한 Squash & Stretch 원칙의 분석)

  • Lee Nam-Kook;Kyung Byung-Pyo;Ryu Seoc-Ho
    • Journal of Game and Entertainment
    • /
    • v.1 no.1
    • /
    • pp.47-54
    • /
    • 2005
  • Squash & Stretch principle is playing an essential principle for animation action. The application of this principle gives the illusion of weight and volume to an animation character, and makes it possible that an animation action be the smooth and soft by escaping from the stiffness and rigidity. If an action of human or object on animation is expressed like a real world, it seems to be unnatural. Any action without Squash & Stretch will look rigid, uninteresting and not alive. It can be applied to movement of all objects, characters' actions, dialogues and facial expressions with a basic rule of mass, volume and gravity. Any action will not be well expressed without this principle. To be a good animation action, it should be deeply applied in 3D animation, not only 2D animation. Thus, a systemic analysis of Squash & Stretch principle is required.

  • PDF

Horizontal Active Thrusts and Design of GRS-RW System for Distanced Surcharge (상재하중 이격거리를 고려한 GRS-RW 공법의 토압해석 및 설계)

  • 방윤경
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.1
    • /
    • pp.15-29
    • /
    • 1999
  • This study presents an analytical method of estimating the developed horizontal active thrusts against GRS-RW( Geosynthetic Reinforced Soil Retaining Wall) system adapted to the case of distanced surcharge. In addition, the design charts that could be used for preliminary design of GRS-RW system are presented. The proposed method of analysis uses two body translation mechanism as well as force polygon concept. taking into account the effect of facing's rigidity. Besides. the effect of tension cracks in c-\Phi$ soils, seismic effects and horizontal distance from the back face of wall to uniformly distributed surcharge loadings are also included. The results of horizontal active thrusts obtained from the developed method of analysis are compared with those from Jarquio's modified Boussinesq equation.

  • PDF

Strength Assessment of 8m-class High-Speed Planing Leisure Boat (8m급 고속 활주선형 레저보트의 구조강도 평가)

  • Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.418-423
    • /
    • 2018
  • Recently, research and development of high-value leisure vessels has been carried out in Korea to revitalize the marine leisure industry and tap into the global maritime leisure market. FRP composite materials, which have excellent physical properties and are available for the manufacture of light hulls, are used widely. One of the most important design technologies is to secure structural safety of leisure vessels made from FRP composite materials. In this study, the structural strength was assessed for the design of an 8-meter high-speed planing leisure boat made from FRP composite materials. The design loads to verify the structural safety were calculated according to the rules for the classification of high speed light craft (KR, 2015), and structural analysis was conducted using a finite element model composed of an isotropic shell element, which has equivalent bending rigidity with the FRP sandwich panel. The analysis results were compared with the results of the strength test for fabricated specimens, and all internal structural components are sufficiently satisfied with the structural strength.

OMA of model steel structure retrofitted with CFRP using earthquake simulator

  • Kasimzade, Azer A.;Tuhta, Sertac
    • Earthquakes and Structures
    • /
    • v.12 no.6
    • /
    • pp.689-697
    • /
    • 2017
  • Nowadays, there are a great number of various structures that have been retrofitted by using different FRP Composites. Due to this, more researches need to be conducted to know more the characteristics of these structures, not only that but also a comparison among them before and after the retrofitting is needed. In this research, a model steel structure is tested using a bench-scale earthquake simulator on the shake table, using recorded micro tremor data, in order to get the dynamic behaviors. Beams of the model steel structure are then retrofitted by using CFRP composite, and then tested on the Quanser shake table by using the recorded micro tremor data. At this stage, it is needed to evaluate the dynamic behaviors of the retrofitted model steel structure. Various types of methods of OMA, such as EFDD, SSI, etc. are used to take action in the ambient responses. Having a purpose to learn more about the effects of FRP composite, experimental model analysis of both types (retrofitted and no-retrofitted models) is conducted to evaluate their dynamic behaviors. There is a provision of ambient excitation to the shake table by using recorded micro tremor ambient vibration data on ground level. Furthermore, the Enhanced Frequency Domain decomposition is used through output-only modal identification. At the end of this study, moderate correlation is obtained between mode shapes, periods and damping ratios. The aim of this research is to show and determine the effects of CFRP Composite implementation on structural responses of the model steel structure, in terms of changing its dynamical behaviors. The frequencies for model steel structure and the retrofitted model steel structure are shown to be 34.43% in average difference. Finally, it is shown that, in order to evaluate the period and rigidity of retrofitted structures, OMA might be used.

Analysis and design of demountable circular CFST column-base connections

  • Li, Dongxu;Wang, Jia;Uy, Brian;Aslani, Farhad;Patel, Vipul
    • Steel and Composite Structures
    • /
    • v.28 no.5
    • /
    • pp.559-571
    • /
    • 2018
  • In current engineering practice, circular concrete-filled steel tubular (CFST) columns have been used as effective structural components due to their significant structural and economic benefits. To apply these structural components into steel-concrete composite moment resisting frames, increasing number of research into the column-base connections of circular CFST columns have been found. However, most of the previous research focused on the strength, rigidity and seismic resisting performance of the circular CFST column-base connections. The present paper attempts to investigate the demountability of bolted circular CFST column-base connections using the finite element method. The developed finite element models take into account the effects of material and geometric nonlinearities; the accuracy of proposed models is validated through comparison against independent experimental results. The mechanical performance of CFST column-base connections with both permanent and demountable design details are compared with the developed finite element models. Parametric studies are further carried out to examine the effects of design parameters on the behaviour of demountable circular CFST column-base connections. Moreover, the initial stiffness and moment capacity of such demountable connections are compared with the existing codes of practice. The comparison results indicate that an improved prediction method of the initial stiffness for these connections should be developed.

The Characteristics of Curvature Ductility Factor of Reinforced Concrete Hollow Section Beams (철근콘크리트 속빈 단면 보의 곡률연성지수 특성)

  • Lee, Hyung-Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6542-6549
    • /
    • 2013
  • In highly elevated piers and long span beams, a hollow section is often used to reduce the self-weight and increase the flexural rigidity of members. Numerical analysis was conducted to obtain the moment-curvature curves and curvature ductility factor for the RC hollow section beams under a range of hollow portion sizes and reinforcement conditions in the upper flange and web. The curvature ductility factor was constantly maintained until the hollow portion size($b_i/b_o/h_i/h_o$) was less than or equal to 0.5. The curvature ductility factor decreased sharply if ($b_i/b_o/h_i/h_o$) was 0.7 or more. The curvature ductility factor of the beam decreased if reinforcement was provided in the web of the RC hollow section beam. To obtain the same level of the ductility factor as the singly reinforced section, the reinforcement should be provided in the upper flange as much as the web reinforcement.

Fashion Design Study on Korean Traditional Image Suitable for Ramie Fabric(I) - The Application of Aesthetic Property of Goguryeo Era Clothing - (모시 소재에 적합한 한국적 이미지의 의상디자인 개발에 대한 연구(제1보) - 고구려 시대 복식의 미적 특징을 적용하여 -)

  • Lee, Mi-Yeon;Lee, Kun-Hee
    • The Research Journal of the Costume Culture
    • /
    • v.16 no.1
    • /
    • pp.130-144
    • /
    • 2008
  • A recent concern about Goguryeo era reflects the efforts to find out our spiritual roots, which have descended from the ancient times; Goguryeo clothing study leads to analysis of our national spirit in terms of form. This study aims to analyze formal property and intrinsic meaning of Goguryeo clothing for Korean ramie clothing design and draw traditional images to derive design elements applicable to ramie clothing. On the basis of technical books, newspaper article, internet and precedent studies, theoretical study on Goguryeo clothing and ramie property was followed up with positive study to analyze the clothing on the Goguryeo ancient tomb mural. The results are as follows: First, a progressive spirit is to progress and develop anything actively; This spirit represents Goguryeo people's ambition and racial characteristic as horse-riding people; The rigidity of ramie fabric is suitable for expressing straight silhouettes and detail in Goguryeo dress. Second, a fluidity means flowing property in opposition to fixation; in the case of clothing, it has a tendency to change form according to body motions; The extensibility and crease-resistance of ramie fabric is suitable to express pleated skirts and holds high design value for modern people who tend to regard clothing as important individuality expression. Third, a universal property to introduce and receive; as Goguryeo was a prosperous country established by conquering an open plain, the period formed a society that recognized diversity by introducing foreign cultures freely; a universality suggests the direction of modernization of traditional ramie clothing and stimulates us to discovert new design through compromise between various cultures rather than to stick to traditional style. Considering the fact that precedent studies on traditional clothing are concentrated upon the Joseon period and also limited to formal analysis, this study aims to derive design elements for actual clothing making. These results are expected to be used as basic material for study as well as reference for designers who wish to design modern Korean clothing.

  • PDF

Deformation Characteristics of Flexible Pipe with Variation of Buried Conditions (매설조건에 따른 연성관의 변형특성)

  • Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.10
    • /
    • pp.53-62
    • /
    • 2014
  • In Korea, the pipe type that has been well used as sewage pipe from the past is primarily a rigid pipe which is represented by concrete hume pipe, but the use of it is being decreased sharply because of the problems such as tube erosion and incomplete watertightness securing through the time. On the other hand, the use of flexible pipe has been increased because its construction ability is excellent on account of its light weight as well as it is resistant to corrosion. However, because there are lacks of market's confidence in flexible pipe and occurrence cases of partial damage incomplete caused by compaction control, cause analysis and management for them are needed. Therefore, this study tried to estimate the deformation characteristics of pipe caused by each condition through numerical analysis changing construction sequence, rigidity of pipe, strength of ground concrete under the pipe, relative compaction ratio of sand foundation under the pipe and relative compaction ratio of backfill material above the pipe. Evaluation result is that influence on each factor is confirmed and the quality control of sand around the pipe are turned up to be important.

Flexural Behavior of Prestressed Dual Concrete Beams (프리스트레스트 이중 콘크리트 보의 휨 거동 해석)

  • Park Tae-Hyo;Yun Sung-Hwan;Yun Hee-Dae
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.445-454
    • /
    • 2005
  • Cracks due to low tensile strength in prestressed concrete (PC) beams may decrease rigidity and structural performance, resulting in excessive deflection. In an effort to solve this problem, in this research, prestressed dual concrete (PDC) has been proposed, consisting of normal strength concrete in compression zone, and high performance steel fiber reinforced concrete(HPSFRC) with a partial depth in tensile zone. Three PDC beams with different depths of HPSFRC and two PC beams were cast for experiments. Analytical models at each stage, i.e., precracking, postcracking, and ultimate, were proposed for analysis of flexural behavior in PDC beams. The experimental results agree well to the analytical ones. Crack formation and its propagation are controlled by the HPSFRC in PDC beams. The initial cracking and service limit loads are increased along with the load carrying capacity and flexural stiffness.