• 제목/요약/키워드: Rigidity analysis

검색결과 574건 처리시간 0.032초

Ratio of Torsion (ROT): An index for assessing the global induced torsion in plan irregular buildings

  • Stathi, Chrysanthi G.;Bakas, Nikolaos P.;Lagaros, Nikos D.;Papadrakakis, Manolis
    • Earthquakes and Structures
    • /
    • 제9권1호
    • /
    • pp.145-171
    • /
    • 2015
  • Due to earthquakes, many structures suffered extensive damages that were attributed to the torsional effect caused by mass, stiffness or strength eccentricity. Due to this type of asymmetry torsional moments are generated that are imposed by means of additional shear forces developed at the vertical resisting structural elements of the buildings. Although the torsional effect on the response of reinforced concrete buildings was the subject of extensive research over the last decades, a quantitative index measuring the amplification of the shear forces developed at the vertical resisting elements due to lateral-torsional coupling valid for both elastic and elastoplastic response states is still missing. In this study a reliable index capable of assessing the torsional effect is proposed. The performance of the proposed index is evaluated and its correlation with structural response quantities like displacements, interstorey drift, base torque, shear forces and upper diaphragm's rotation is presented. Torsionally stiff, mass eccentric single-story and multistory structures, subjected to bidirectional excitation, are considered and nonlinear dynamic analyses are performed using natural records selected for three hazard levels. It was found that the proposed index provides reliable prediction of the magnitude of torsional effect for all test examples considered.

Design of a Hybrid Serial-Parallel Robot for Multi-Tasking Machining Processes (ICCAS 2005)

  • Kyung, Jin-Ho;Han, Hyung-Suk;Ha, Young-Ho;Chung, Gwang-Jo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.621-625
    • /
    • 2005
  • This paper presents a new hybrid serial-parallel robot(HSPR), which has six degrees of freedom driven by ball screw linear actuators and motored joints. This hybrid robot design presents a compromise between high rigidity of fully parallel manipulators and extended workspace of serial manipulators. The hybrid robot has a large, singularity-free workspace and high stiffness. Therefore, the presented kinematic structure of the hybrid robot is particularly suitable for multi-tasking machining processes such as milling, drilling, deburring and grinding. In addition to the machining processes, the hybrid robot can be used for welding, fixturing, material handling and so on. The study on design of the hybrid robot is performed. A kinematic analysis and mechanism description of the hybrid robot with six-controlled degree of freedom is presented. In the virtual design works by DADS, workspace and force analysis are discussed. A numerical model is treated to demonstrate our analysis and to determine the range of permissible extension of the struts. Also, we determine some important design parameters for the hybrid robot.

  • PDF

성토지지말뚝으로 지지된 성토지반내 펀칭전단파괴 (Punching shear failure in pile-supported embankment)

  • 홍원표;홍성원;송제상;이재호
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.369-378
    • /
    • 2010
  • In this study, a computer program to predict the behavior of laterally loaded single pile and pile groups was developed by using a beam-column analysis in which the soils are modeled as nonlinear springs by a family of p-y curves for subgrade modulus. The special attention was given to the lateral displacement of a single pile and pile groups due to the soil condition and the cap rigidity. The analysis considering group effect was carried out for $2{\times}2$ and $3{\times}3$ pile groups with the pile spacing 3.0B, 4.0B and 5.0B. Based on the results obtained, it is found that the overall distributions of deflection, slope, moment, and shear force in a single pile give a reasonable results irrespective of cap connectivity conditions. It is also found that even though there are some deviations in deflection prediction compared with the observed ones, the prediction by present analysis simulates much better the general trend observed by the centrifuge tests than the numerical solution predicted by PIGLET.

  • PDF

암석의 이방성에 기인한 절토사면 붕괴 사례연구 (Case study of Cut-slop failure caused by rock anisotropy)

  • 정영국;장범수;신창건;이연희
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.831-837
    • /
    • 2005
  • In this study, a computer program to predict the behavior of laterally loaded single pile and pile groups was developed by using a beam-column analysis in which the soils are modeled as nonlinear springs by a family of p-y curves for subgrade modulus. The special attention was given to the lateral displacement of a single pile and pile groups due to the soil condition and the cap rigidity. The analysis considering group effect was carried out for $2\;{\times}\;2\;and\;3\;{\times}\;3$ pile groups with the pile spacing 3.0B, 4.0B and 5.0B. Based on the results obtained, it is found that the overall distributions of deflection, slope, moment, and shear force in a single pile give a reasonable results irrespective of cap connectivity conditions. It is also found that even though there are some deviations in deflection prediction compared with the observed ones, the prediction by present analysis simulates much better the general trend observed by the centrifuge tests than the numerical solution predicted by PIGLET.

  • PDF

자동차 시트벨트의 진동특성 개선을 위한 구조에 관한 연구 (A Study on the Structure for the Improvement of Vibration Characteristics of a Vehicle Seatbelt)

  • 김창희;오채은;김태우;송철우;이석순
    • 한국기계가공학회지
    • /
    • 제19권2호
    • /
    • pp.97-102
    • /
    • 2020
  • To prevent vibration of a vehicle's interior parts due to external impacts, the vehicle should be designed to reduce vibration and increase rigidity. In this paper, we conducted a vehicle test in which the vibration characteristics of a seatbelt resulting from the impact of a person closing a car door were measured and analyzed. A correlation analysis was performed using the finite analysis method. Based on this, a sensitivity analysis was performed, and an improved model was designed. We compared the natural frequencies and mode shapes of the improved and the initial models, which confirmed that the natural frequency of the improved model was more than 10 Hz higher than that of the initial model. Moreover, the response frequency of the improved model was three times higher than the input frequency applied in the vehicle test.

케이블-돔 복합구조의 형상해석에 관한 연구 (A Study on the Shape Analysis of Cable-Dome Structures)

  • 권택진;한상을;최옥훈
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 봄 학술발표회 논문집
    • /
    • pp.93-100
    • /
    • 1998
  • The basic systems of spatial structures such as shells, membrane, cable-nets and tensegrity structure have been developed to create the large spaces without column. These structures may have large freedom in scale and form, and especially tensegrity structures are received much attention from the view points of their light weight and aesthetics. But There re some difficulties concerning structural stability, surface formation and construction method. One of the way to solve these problems reasonably is a combination of tensile members and rigid members. A structural system based on this concept is referred to as the "HTS ( Hybrid Tension Structure )". This is a type of flexible structural system which is unstable initially, because the cable material has little initial rigidity. As cable - dome hybrid structures is a type of HTS, the initial stress for the self- equilibrated system having stable state have to be introduced. To determine initial stress having stable state, the shape finding analysis is required before the stress - deformation analysis. In this paper, the primary objective is to derive the nonlinear finite element formula of cable and truss members considering geometric nonlinearity for shape finding of cable-dome, and to propose the method to decide the initial stress by the shape analysis of cable-dome hybrid structure with the self-equilibrated state.

  • PDF

충전형 FRP 합성박스 모듈의 압축파괴 거동 분석 (Analysis of Compressive Fracture Behavior of Filled FRP Composite Box Module)

  • 김호선;장화섭;이호현;윤국현
    • 한국전산구조공학회논문집
    • /
    • 제25권1호
    • /
    • pp.1-8
    • /
    • 2012
  • 본 연구는 다양한 건설 구조물 중 휨 응력을 받는 부재인 슬래브, 거더 등에 FRP(Fiber Reinforced Polymer) 박스부재를 적용하기 위한 기초 실험적 연구이다. 조립이 가능한 FRP 부재를 제작하여 FRP 박스부재의 대형단면으로서의 연결 후 압축파괴 거동 특성을 분석하기 위하여 다양한 조건으로 실험을 수행하였다. FRP 박스부재의 상부에 충진재와 하중재하 방법 및 연결형태에 따른 압축파괴 거동 실험을 실시하였으며, 이를 이용하여 유한요소해석을 수행하였다. 해석결과를 실험결과와 비교한 결과 강성이 약간 낮게 조사되었으나 시험체의 파괴지점에 응력이 집중되는 것을 확인할 수 있었다.

가족체계 진단 척도 개발 및 타당화 연구 - Minuchin의 구조적 가족치료 이론에 기초하여 - (The Development of the Family System Diagnosis Scale and Its Validity - On the Basis of Minuchin′s Structural Family Therapy Theory-)

  • 이미옥
    • 대한가정학회지
    • /
    • 제42권3호
    • /
    • pp.179-193
    • /
    • 2004
  • The purpose of this study was to develop the Family System Diagnosis Scale and to examine its reliability and validity. The subscales of the questionnaire included scores on seven constructs. In order to define constructs accurately, a careful review of Minuchin's writings, the writings of other family therapists, and relevant articles on family interaction was undertaken. A pool of 150 items was given to eight family counselors along with a description of Minuchin' s concepts. The counselors were asked to choose the category each statement fit and to rate the degree of fit using the 3-point scale. Using exploratory factor analysis, confirmatory factor analysis and Linear Structural Relationship(LISREL), six subdimensions of individuation and 55 items of FSDS were identified; enmeshmen disengagement(16 items), parent coalition generational coalition(6 items), flexibility rigidity(5 items), spouse conflict resolved unresolved(8 items), mother-child cohesion estrangement(10 items), father-child cohesion estrangement(10 items). 356 adolescents(ages 13∼18), 356 fathers, 356 mothers in Seoul, Busan, Dague, Incheun, Dajeun, Ulsan, and Kwangju were completed the Family System Diagnosis Scale(FSDS). The reliability of the scale was calculated by Cronbach's a Coefficient and the total a = .94 and the calculation for each factor was .87, .60, .77, .80 and .79 respectively.

복합형상 부품 가공용 라인센터의 경량화를 위한 형상 최적화에 관한 연구 (Shape Optimization for Lightweight of the Line Center for Processing Complex Shape Parts)

  • 박도현;정호인;김상원;이춘만
    • 한국기계가공학회지
    • /
    • 제20권8호
    • /
    • pp.86-92
    • /
    • 2021
  • As interest and demand for high value-added industries, including the global automobile and aerospace industries, have increased recently, demand for line centers with excellent performance that can respond to the production system for producing high value-added products is also rapidly increasing. A line center improves productivity based on the installed area using a multi-spindle compared to a conventional machining center. However, as the number of spindles increases, the weight increases and results in structural problems owing to the heat and vibration generated by each spindle. Therefore, it is necessary to improve machining precision through the structural improvement of the line center. This study presents research on the stabilization design of the line center through structural stability analysis through structural analysis to develop a compact multi-axis line center. An optimization model of the line center has been proposed to improve the processing precision and increase the rigidity by performing weight reduction based on the structural analysis results.

Parametric analysis of hybrid outrigger system under wind and seismic loads

  • Neethu Elizabeth Johna;Kiran Kamath
    • Structural Engineering and Mechanics
    • /
    • 제86권4호
    • /
    • pp.503-518
    • /
    • 2023
  • In tall constructions, the outriggers are regarded as a structural part capable of effectively resisting lateral loads. This study analyses the efficacy of hybrid outrigger system in high rise RCC building for various structural parameters identified. For variations in α, which is defined as the ratio of the relative flexural stiffness of the core to the axial rigidity of the column, static and dynamic analyses of hybrid outrigger system having a virtual and a conventional outrigger at two distinct levels were conducted in the present study. An investigation on the optimal outrigger position was performed by taking the results from absolute maximum inter storey drift ratio (ISDmax), roof acceleration (accroof), roof displacement (disproof), and base bending moment under both wind and seismic loads on analytical models having 40, 60 and 80 storeys. An ideal performance index parameter was introduced and was utilized to obtain the optimal position of the hybrid outrigger system considering the combined response of ISDmax, accroof, disproof and, criteria required for the structure under wind and seismic loads. According to the behavioural study, increasing the column area and outrigger arm length will maximise the performance of the hybrid outrigger system. The analysis results are summarized in a flowchart which provides the optimal positions obtained for each dependent parameter and based on ideal performance index which can be used to make initial suggestions for installing a hybrid outrigger system.