• Title/Summary/Keyword: Rigid-thermoviscoplastic Finite Element Analysis

Search Result 17, Processing Time 0.024 seconds

A Process Design for Hot-Forging of a Titanium-6242 Disk (티타늄-6242 디스크의 열간단조를 위한 공정설계)

  • 박종진
    • Transactions of Materials Processing
    • /
    • v.3 no.3
    • /
    • pp.271-281
    • /
    • 1994
  • Titanium-6242 $({\alpha}+{\beta})$ alloy has been used for aircraft engine components such as disks and blades, because it has an excellent strength/weight ratio at high temperatures. When this material is forged to manufacture disks, process parameters should be carefully designed to control strain and temperature distributions within the process windows by which desirable mechanical properties can be produced. In the present investigation, it was intended to design the process parameters for a conventional hot forging of this material by using a rigid-thermoviscoplastic finite element analysis technique. It was assumed that the process was performed by a screw press which is capable of maintaining a constant ram speed during loading. From the analysis results, it was found out that the initial temperature of the workpiece and the die shape were important parameters to control the forging process. In result, these parameters were properly designed for hot forging of a disk with specific dimensions.

  • PDF

Prediction of microstructural evloution in hot forging of steel by finite element method (유한요소법에 의한 열간단조공정에서 강의 미세조직변화 예측)

  • 장용순;고대철;최재찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.219-222
    • /
    • 1995
  • The objective of this study is to demonstrate the ability of a computer simulation of microstructural evolution in hot forging of C-Mn steels. The finite element method is applied to the prediction of the microstructural evolution, and it should be coupled with heat transfer analysis to consider the change of thermomechanical properties during the deformation. In this study, Yada's recrystallization model and rigid-thermoviscoplastic finite element method were employed in order to analyze microstructural evolution during hot forging process. To show the validity and effectveness of the proposed method, the experiment of hot compression process was accomplished and the results of experiment were compared with those of simulation. Consequently, this approach shows a good agreement with experimental results.

  • PDF

An Analysis of Turbine Disk Forging of Ti-Alloy by the Rigid-Plastic Finite Element Method (강소성 유한요소법을 이용한 Ti 합금 터빈디스크의 단조공정 해석)

  • 조현중;박종진;김낙수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.2954-2966
    • /
    • 1994
  • The characteristics and good corrosion resistance at room and elevated temperatures led to increasing application of Ti-alloys such as aircraft, jet engine, turbine wheels. In forging of Ti-alloy at high temperature, die chilling and die speed should be carefully controlled because the flow stress of Ti-alloy is sensitive to temperature, strain and strain-rate. In this study, the forging of turbine disk was numerically simulated by the finite element method for hot-die forging process and isothermal forging process, respectively. The effects of the temperature changes, the die speed and the friction factor were examined. Also, local variation of process parameters, such as temperature, strain and strain-rate were traced during the simulation. It was shown that the isothermal forging with low friction condition produced defect-free disk under low forging load. Consequently, the simulational information will help industrial workers develope the forging of Ti-alloys including 'preform design' and 'processing condition design'. It is also expected that the simulation method can be used in CAE of near net-shape forging.

Manufacture of 7000 Al Alloy with Superior Extrudability and Its Extrusion Limit Diagram (압출성 향상을 위한 고강도 7000계 알루미늄 합금의 제조 및 압출한계선도)

  • Ham, H.W.;Kim, B.M.;Cho, H.;Cho, H.H.
    • Transactions of Materials Processing
    • /
    • v.8 no.5
    • /
    • pp.482-490
    • /
    • 1999
  • 7000 series Al alloy with good mechanical properties has been focused with tendency to reduce the components weight of aircraft and automobile. However, it is difficult to manufacture a sound extruded product because of segregation, grain growth, casting defect, surface defect, decreasing extrudability and so on. The objective of this study is to manufacture a new 7000 al alloy more than the extrudability of A7N01 and A7003 through controlling the weight (%) Mg, Zn, Si. Hot extrusion experiments on the axisymmetric rod are performed in 500℃ and also performed analysis of the same process using unmerical analysis method, a coupled rigid-thermoviscoplastic finite element method. Extrusion limit diagram was obtained for the developed alloy by FE-simulation in order to define the relationship of extrusion speed and initial billet temperature.

  • PDF

Finite Element Simulation of a Hot Aluminum Roll Forging Process and its Experimental Verification (열간 알루미늄 롤단조 공정의 유한요소해석과 실험적 검증)

  • Eom, J.G.;Li, Q.S.;Lee, M.C.;Joun, M.S.;Jung, S.J.;Park, G.H.;Gwak, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.437-440
    • /
    • 2009
  • In this paper, an aluminum ring forging process of manufacturing an optimized perform for a hot forging process is simulated using AFDEX 3D, a general-purpose metal forming simulator based on rigid-thermoviscoplastic finite element method. Non-isothermal analysis is carried out and the predictions are compared with the experiments in terms of dimensional accuracy. It was shown that the predictions are in good agreement with the experiments.

  • PDF

Numerical Analysis of Sheet Metal Shearing by the Element Kill Method (요소제거법에 의한 판재 전단가공의 수치해석)

  • 고대철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.191-195
    • /
    • 1996
  • Conventional single-side straight cutting of sheet metal is analyzed by the rigid-thermoviscoplastic finite element method. The FE-simulation is performed from initial stage to final stage of shearing process. The ductile fracture criterion and element kill method are used in the present work to estimate if and where a fracture occurs and to investigate the features of sheared surface in shearing process. The FE-simulation results are obtained for different clearances and these are compared with published experimental results. It is found that the results of the present work are in close agreement with published experimental results.

  • PDF

Finite Element Analysis of a Hot Profile Ring Rolling Process of the Ball Bearing Outer Race (볼 베어링 외륜 열간형상링압연 공정의 유한요소해석)

  • Kim, Bong-Su;Choi, In-Su;Choi, Moo-Ho;Lee, Gun-Myung;Kim, Eung-Zu;Joun, Man-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.164-168
    • /
    • 2012
  • In this paper, a manufacturing process for a ball bearing outer race is studied by experiments and predictions, which is composed of four hot forging stages and the final hot or warm profile ring rolling stage. An analysis model and some assumption to simulate the profile ring rolling process is introduced. The entire process including the forging stages and ring rolling stage is simulated using a rigid-thermoviscoplastic finite element method and the predictions are compared with the experiments in terms of major dimensions, showing that they are quantitatively very close to each other.