• 제목/요약/키워드: Rigid-Viscoplastic FEM

검색결과 22건 처리시간 0.016초

S20C강 저속 라운드-모발 압연의 AGS 분포 (AGS Distribution in Low-Speed Round-Oval Rolling of S20C Steel)

  • 권혁철;이호원;이영석;임용택
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 제5회 압연심포지엄 신 시장 개척을 위한 압연기술
    • /
    • pp.297-306
    • /
    • 2004
  • This study investigated Austenite Grain Size (AGS) distribution in Low-Speed Round-Oval Rolling. Rolling experiments were done along with the AGS numerical modeling to characterize the final AGS distribution and its kinetics behavior. For bar rolling experiment, we utilized the pilot rolling mill, operating at 34 fixed rpm, at POSCO Technical Research Laboratories. To investigate the microstructural observation, the rigid-viscoplastic finite element analysis was combined with Hodgson's AGS evolution model. To consider the transient thermal history in the integrative AGS modeling, additivity rule was introduced. The integrated analysis revealed that static or meta-dynamic recrystallization is responsible for the AGS difference in the inner or outer region of rolled bar. Comparative study showed that the current AGS modeling approach can be used to model the overall AGS distribution in bar rolling processes. For more accurate AGS prediction, the AGS modeling method should be verified under the various rolling conditions such as different rolling speeds and different deformations.

  • PDF

온간 딮 드로잉에서 이종금속판재(STS430-Al3004-AZ31)의 파단 및 두께 예측을 위한 연구 (Prediction for Thickness and Fracture of Stainless Steel-Aluminum-Magnesium Multilayered Sheet during Warm Deep Drawing)

  • 이영선;이광석;김대용
    • 소성∙가공
    • /
    • 제21권1호
    • /
    • pp.49-57
    • /
    • 2012
  • It is difficult to estimate the properties of multilayered sheet because they are composed of one or more different materials. Plastic deformation behavior of the multilayered sheet is quite different as compared to each material individually. The deformation behavior of multilayered sheet should be investigated in order to prevent forming defects and to predict the properties of the formed part. In this study, the mechanical properties and formability of stainless steel-aluminum-magnesium multilayered sheet were investigated. The multilayered sheet needs to be deformed at an elevated temperature because of its poor formability at room temperature. Uniaxial tensile tests were performed at various temperatures and strain rates. Fracture patterns changed mainly at a temperature of $200^{\circ}C$. Uniform and total elongation of multilayered sheet increased to values greater than those of each material when deformed at $250^{\circ}C$. The limiting drawing ratio (LDR) was obtained using a circular cup deep drawing test to measure the formability of the multilayered sheet. A maximum value for the LDR of about 2 was achieved at $250^{\circ}C$, which is the appropriate forming temperature for the Mg alloy. Fracture patterns on a circular cup and thickness of formed part were predicted by a rigid-viscoplastic FEM analysis. Two kinds of modeling techniques were used to simulate deep drawing process of multilayered sheet. A single-layer FE-model, which combines the three different layers into a macroscopic single layer, predicted well the thickness distribution of the drawn cup. In contrast, the location and the time of fracture were estimated better with a multi-layer FE model, which used different material properties for each of the three layers.