• Title/Summary/Keyword: Rigid method

Search Result 1,787, Processing Time 0.029 seconds

Phylogenesis of Halophila ovalis (R. Br.) Hook. fil. (Hydrocharitaceae) from An Island, Korea (전남 여수시 안도섬에서 발견된 해오말의 유전학적 관계 연구)

  • Kim, Jeong-Bae;Cho, Eun-Seob
    • Journal of Life Science
    • /
    • v.18 no.6
    • /
    • pp.759-763
    • /
    • 2008
  • Halophila ovalis (R. Br.) Hook. fil. was first collected from the Ando, Yeosu, Korea in 2007. H. ovalis is Widely distributed from sub-tropical to even tropical areas and produces the seeds using bisexual reproduction. Its leaf shape was oblong to ovate. Its leaf blades were rigid in texture, with a strong support to the leaf. Erect shoots arose at irregular intervals along the rhizome. The distance between the intramarginal vein and leaves margin was small. Nucleotides in ITS 1 and ITS 2 regions between the Korean and Japanese H. ovalis were found to be 100% similar, whereas Korean H. ovalis was found to have four nucleotides in the positions of 202 bp to 206 bp for 5.8S. In the analysis of the phylogenetic relationship using NJ method, Korean H. ovalis had a monophyletic genetic tree with Japanese H. ovalis, but no phylogenetic relationship with types from the Philippines, Australia, Malaysia, and Vietnam. The first occurrence of H. ovalisin Korea was associated with a strong migration of gene flow from Japan and high water temperature caused by the variations in climate.

A Study on Net-shape Technology of Automotive Lock-up Hub using Cold Back Pressure Forming (배압 성형기술을 이용한 Lock-up Hub의 정형제조 기술에 관한 연구)

  • Kwon, Y.C.;Lee, J.H.;Lee, Y.S.;Ishikawa, T.
    • Transactions of Materials Processing
    • /
    • v.17 no.2
    • /
    • pp.124-129
    • /
    • 2008
  • Net shape forging technologies give many effects into the costs and qualities for the finished products. So, the studies to reduce the additional machining amount are very important in forging industry. Specially, there are two main topics in cold forging industry, such as, tool life and precision forging. In this study, new forging technique was proposed to eliminate the machining process for fixing up the length and improve the lead accuracy of gear. The luck-up hub is manufactured through many processes, such as upsetting, piercing and direct extrusion. The gear is formed in direct extrusion process; however, lead accuracy of the gear is over allowance limit. Therefore, the additional sizing process must be added. In this study, process design for closed-die forging of a lock-up hub used for a component of automobile transmission was made using three-dimensional finite element simulations, and the strain distributions and velocity distributions are investigated through the post processor. The rigid-plastic finite-element method for back pressure forging has been used in order to reduce development time and die cost. Using the FEM simulation, we found the optimum value of back pressure. The prototypes of lock-up hub parts were forged into the net-shape. In the experiment, lead precision of tooth are measured by the CCMM(Contact Coordinate Measuring Machine). The dimensional accuracy of forged part was improved up to the 40% when back press was applied.

The Proportional Hazards Modeling for Consecutive Pipe Failures Based on an Individual Pipe Identification Method using the Characteristics of Water Distribution Pipes (상수도 배수관로의 특성에 따른 개별관로 정의 방법을 이용한 파손사건 사이의 비례위험모델링)

  • Park, Suwan;Kim, Jung Wook;Jun, Hwan Don
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.1
    • /
    • pp.87-96
    • /
    • 2007
  • In this paper a methodology of identifying individual pipes according to the internal and external characteristics of pipe is developed, and the methodology is applied to a case study water distribution pipe break database. Using the newly defined individual pipes the hazard rates of the cast iron 6 inch pipes are modeled by implementing the proportional hazards modeling approach for consecutive pipe failures. The covariates to be considered in the modeling procedures are selected by considering the general availability of the data and the practical applicability of the modeling results. The individual cast iron 6 inch pipes are categorized into seven ordered survival time groups according to the total number of breaks recorded in a pipe to construct distinct proportional hazard model (PHM) for each survival time group (STG). The modeling results show that all of the PHMs have the hazard rate forms of the Weibull distribution. In addition, the estimated baseline survivor functions show that the survival probabilities of the STGs generally decrease as the number of break increases. It is found that STG I has an increasing hazard rate whereas the other STGs have decreasing hazard rates. Regarding the first failure the hazard ratio of spun-rigid and spun-flex cast iron pipes to pit cast iron pipes is estimated as 1.8 and 6.3, respectively. For the second or more failures the relative effects of pipe material/joint type on failure were not conclusive. The degree of land development affected pipe failure for STGs I, II, and V, and the average hazard ratio was estimated as 1.8. The effects of length on failure decreased as more breaks occur and the population in a GRID affected the hazard rate of the first pipe failure.

A Study of Semi Fine-blanking Mold Analysis using Finite Element Method (유한요소법을 이용한 세미 파인-블랭킹 금형 해석에 관한 연구)

  • Lee, Sang-Hun;Song, Gi-Hwan;Son, Chang-Woo;Seo, Hyoung-Jin;Seo, Tae-Il
    • Design & Manufacturing
    • /
    • v.10 no.1
    • /
    • pp.51-54
    • /
    • 2016
  • Metal sheet forming has been commonly used as the core technology in manufacturing parts of automobiles. It guarantees the highest production rate due to the process of mass production employing the press die. For precision of the product, the accuracy of the molds and its mechanic structures are considered as essential factors. One of these is fine blanking, which is utilized for the production of the metal sheet spring, with which clear sheer surfaces can be achieved in one operation from the materials. However, the current designs of press dies perform the forming analysis with the molds of rigid body, so they are focused on weight lightening by a rule of thumb. Therefore, this paper practice structural analysis about developing the semi fine-fine blanking technology. The semi fine-blanking can be run through the combination of the hydraulic cylinders and normal presses, so this paper analyze the amount of deformation according to the oil pressure. In addition, based on the plasticity of 50CrV4, the materials of the mold parts, the structural analysis and life analysis are proceeded, so they are expected to be useful as data for manufacturing the mold.

Development of Finite Element Model of Hybrid III 5th Percentile Female Dummy (Hybrid III 5% 성인 여성 더미의 유한요소 모델 개발)

  • Yi, Sang-Il;Mohan, Pradeep K.;Kan, Cing-Dao Steve;Park, Gyung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.18-30
    • /
    • 2010
  • As the automobile industry is developing, the number of deaths and injuries has increased. To reduce the damages from automobile accidents, the government of each country proposes experimental conditions for reproducing the accident and establishes the vehicle safety regulations. Automotive manufacturers are trying to make safer vehicles by satisfying the requirements. The Hybrid III crash test dummy is a standard Anthropomorphic Test Device (ATD) used for measuring the occupant's injuries in a frontal impact test. Since a real crash test using a vehicle is fairly expensive, a computer simulation using the Finite Element Method (F.E.M.) is widely used. Therefore, a detailed and robust F.E. dummy model is needed to acquire more accurate occupant injury data and behavior during the crash test. To achieve this goal, a detailed F.E. model of the Hybrid III 5th percentile female dummy is constructed by using the reverse engineering technique in this research. A modeling process is proposed to construct the F.E. model. The proposed modeling process starts from disassembling the physical dummy. Computer Aided Design (CAD) geometry data is constructed by three-dimensional (3-D) scanning of the disassembled physical dummy model. Based on the geometry data, finite elements of each part are generated. After mesh generation, each part is assembled with other parts using the joints and rigid connection elements. The developed F.E. model of dummy is simulated based on the FMVSS 572 validation regulations. The results of simulation are compared with the results of physical tests.

Case Study of Characteristic of Ground Deformation and Strut Axial Force Change in Long Span Deep Excavation(I) (장지간 깊은 굴착에서 지반변형 및 버팀보 축력변화 특성 사례연구(I))

  • Kim, Sung-Wook;Han, Byung-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.308-319
    • /
    • 2009
  • In the case of relatively good ground and construction condition in the deep excavation for the construction of subway, railway, building etc., flexible earth retaining systems are often used in an economical point of view. It is generally known that the mechanism of behavior in the flexible earth retaining system is relatively more complicated than the rigid earth retaining system. Moreover in the case of long span strut supporting system the analysis of strut axial force change becomes more difficult when the differences of ground condition and excavation work progress on both sides of excavation section are added. When deeper excavation than the specification or installation delay of supporting system is done or change of ground condition is faced due to the construction conditions during construction process, lots of axial force can be induced in some struts and that can threaten the safety of construction. This paper introduces two examples of long span deep excavation where struts and rock bolts were used as a supporting system with flexible wall structure. And the sections of two examples are 50 meters apart in one construction site, they have almost similar design and construction conditions. The characteristics of ground deformation and strut axial force change were analysed, the similarity and difference between measurement results of tow examples were compared and investigated. The effort of this article aims to improve and develop the technique of design and construction in the coming projects having similar ground condition and supporting method.

  • PDF

Multi-dimensional wind vibration coefficients under suction for ultra-large cooling towers considering ventilation rates of louvers

  • Ke, S.T.;Du, L.Y.;Ge, Y.J.;Tamura, Y.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.273-283
    • /
    • 2018
  • Currently, the dynamic amplification effect of suction is described using the wind vibration coefficient (WVC) of external loads. In other words, it is proposed that the fluctuating characteristics of suction are equivalent to external loads. This is, however, not generally valid. Meanwhile, the effects of the ventilation rate of louver on suction and its WV are considered. To systematically analyze the effects of the ventilation rate of louver on the multi-dimensional WVC of ultra-large cooling towers under suctions, the 210 m ultra-large cooling tower under construction was studied. First, simultaneous rigid pressure measurement wind tunnel tests were executed to obtain the time history of fluctuating wind loads on the external surface and the internal surface of the cooling tower at different ventilation rates (0%, 15%, 30%, and 100%). Based on that, the average values and distributions of fluctuating wind pressures on external and internal surfaces were obtained and compared with each other; a tower/pillar/circular foundation integrated simulation model was developed using the finite element method and complete transient time domain dynamics of external loads and four different suctions of this cooling tower were calculated. Moreover, 1D, 2D, and 3D distributions of WVCs under external loads and suctions at different ventilation rates were obtained and compared with each other. The WVCs of the cooling tower corresponding to four typical response targets (i.e., radial displacement, meridional force, Von Mises stress, and circumferential bending moment) were discussed. Value determination and 2D evaluation of the WVCs of external loads and suctions of this large cooling tower at different ventilation rates were proposed. This study provides references to precise prediction and value determination of WVC of ultra-large cooling towers.

Autogenous Low Heat Treated Bone Graft for Bone Reconstruction in Bone and Soft Tissue Tumors (골연부 종양에서 저온 열처리한 자가골을 이용한 재건술)

  • Jeon, Dae-Geun;Lee, Jong-Seok;Kim, Sug-Jun;Cho, Wan-Hyeong;Kwag, Bong-Jun;Lee, Soo-Yong
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.4 no.2
    • /
    • pp.81-87
    • /
    • 1998
  • Although autoclaved autogenous bone reconstruction is one of the established procedures, it may have some problems in bone regeneration and mechanical property. The purpose of this study is to evaluate the efficacy of more biologic and anatomical reconstruction where allograft is not readily available. From Aug.1991 to Feb. 1996 the authors analyzed 32 cases of reconstruction with autogenous low heat treated bone. Autogenous graft sites were humerus 4, tibia 4, pelvis 9, and 15 femur. Average follow-up period was 23(range;12-51) months. There were 49 graft-host junctional sites. Diaphysis was 22, metaphysis 10, and flat bone 17. Average duration of healing for the 38 united sites was 7 months. Average union time for each anatomical area 8 months in 19 diaphysis, 12 months in 7 metaphysis, and 12.7 months in 12 flat bone(pelvis). Eleven nonunion sites consisted of 3 diaphysis(3/22), 3 metaphysis(3/10), and 5 flat bone(5/17). Complications other than nonunion were local recurrence(4), bone resorption(3), graft fracture(2), osteomyelitis(1), metal failure(2), and wound infection(1). Initial bone quality and stable fixation technique was important for union rate. Plate and screw is a good method for diaphyseal lesion. Metaphyseal and flat bone are weak area for rigid fixation and one stage augmentation with iliac bone graft can be a salvage procedure.

  • PDF

Soil-structure-foundation effects on stochastic response analysis of cable-stayed bridges

  • Kuyumcu, Zeliha;Ates, Sevket
    • Structural Engineering and Mechanics
    • /
    • v.43 no.5
    • /
    • pp.637-655
    • /
    • 2012
  • In this study, stochastic responses of a cable-stayed bridge subjected to the spatially varying earthquake ground motion are investigated by the finite element method taking into account soil-structure interaction (SSI) effects. The considered bridge in the analysis is Quincy Bay-view Bridge built on the Mississippi River in between 1983-1987 in Illinois, USA. The bridge is composed of two H-shaped concrete towers, double plane fan type cables and a composite concrete-steel girder deck. In order to determine the stochastic response of the bridge, a two-dimensional lumped masses model is considered. Incoherence, wave-passage and site response effects are taken into account for the spatially varying earthquake ground motion. Depending on variation in the earthquake motion, the response values of the cable-stayed bridge supported on firm, medium and soft foundation soil are obtained, separately. The effects of SSI on the stochastic response of the cable-stayed bridge are also investigated including foundation as a rigidly capped vertical pile groups. In this approach, piles closely grouped together beneath the towers are viewed as a single equivalent upright beam. The soil-pile interaction is linearly idealized as an upright beam on Winkler foundation model which is commonly used to study the response of single piles. A sufficient number of springs on the beam should be used along the length of the piles. The springs near the surface are usually the most important to characterize the response of the piles surrounded by the soil; thus a closer spacing may be used in that region. However, in generally springs are evenly spaced at about half the diameter of the pile. The results of the stochastic analysis with and without the SSI are compared each other while the bridge is under the sway of the spatially varying earthquake ground motion. Specifically, in case of rigid towers and soft soil condition, it is pointed out that the SSI should be significantly taken into account for the design of such bridges.

Development and Verification of the Steering Algorithm for Articulated Vehicles (굴절차량에 대한 조향알고리즘 개발 및 검증)

  • Moon, Kyeong-Ho;Lee, Soo-Ho;Mok, Jai-Kyun;Park, Tae-Won
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.3
    • /
    • pp.225-232
    • /
    • 2008
  • AWS (all wheel steering) is applied to improve the stability and the turning performance. Most automotive cars are mainly controlled by FWS (front wheel steering) system except some cars which are made to improve their stability by using AWS. Articulated vehicles with a pivoting joint for easy turn are difficult to make a sharp turn because of the long body and long wheelbase. Therefore applying AWS to the articulated vehicles is effective to reduce the turning radius. The AWS control method for the articulated vehicles is currently applied to only Phileas vehicles which were developed by APTS. The paper on the design of a controller to guide an articulated vehicle along the path was published but control algorithm for manual driving has not been reported. In the present paper, steering, characteristics of the Phileas vehicles have been analyzed and then new algorithm has been proposed. To verify the AWS algorithm, Commercial S/W, ADAMS was used for validity of the dynamic model and algorithm.