• Title/Summary/Keyword: Rigid lid

Search Result 10, Processing Time 0.03 seconds

Application of Rigid Lid Boundary Condition for Three Dimensional Flow Analysis beneath Floating Structure (부유체하부의 3차원 흐름해석을 위한 Rigid lid 경계조건의 적용)

  • Hong, Nam-Seeg
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.5
    • /
    • pp.55-62
    • /
    • 2012
  • In this paper, the rigid lid boundary condition is applied to simulate the influence of floating structures such as ships or pontoons, and the pressure term in both the momentum equations and continuity equation are modified. The pressure of a floating structure under the free surface is dependent on the draft of the structure, generally called a ship. If the free surface is covered by a floating structure, the free surface cannot move freely. The water level should be fixed, using a rigid lid boundary condition. This boundary condition is implemented by reducing the storage area of the grid cell with a factor between zero and one. The numerical model developed by Hong (2009) is verified through a comparison with experimental results, and the influence of the reduction factor is investigated using the verified numerical model.

Boussinesq equations for internal waves in a two-fluid system with a rigid lid

  • Liu, Chi-Min
    • Ocean Systems Engineering
    • /
    • v.6 no.1
    • /
    • pp.117-128
    • /
    • 2016
  • A theoretical study of Boussinesq equations (BEs) for internal waves propagating in a two-fluid system is presented in this paper. The two-fluid system is assumed to be bounded by two rigid plates. A set of three equations is firstly derived which has three main unknowns, the interfacial displacement and two velocity potentials at arbitrary elevations for upper and lower fluids, respectively. The determination of the optimal BEs requires a solution of depth parameters which can be uniquely solved by applying the $Pad{\acute{e}}$ approximation to dispersion relation. Some wave properties predicted by the optimal BEs are examined. The optimal model not only increases the applicable range of traditional BEs but also provides a novel aspect of internal wave studies.

Modeling on the North Pacific Ocean

  • Kwangwoo Cho;Yoon, Jong-Hwan;Park, Seog-Won
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2000.10a
    • /
    • pp.167-168
    • /
    • 2000
  • A North Pacific Ocean Model has been developed with the Global Ocean Model of the Meteorological Research Institute of Japan which solves the primitive equations with Boussinesq, rigid-lid, and hydrostatic assumptions. The objective of the study is to improve the description of the variability on the East Sea and northwestern Pacific Ocean. (omitted)

  • PDF

The sectional analysis of auto-body panel stamping process and three-dimensional shape composition (차체판넬 스템핑공정의 단면해석과 3차원 형상합성)

  • Jung, Dong-Won;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.9
    • /
    • pp.101-107
    • /
    • 1997
  • A sectional analysis of auto-body panel stamping is carried out by using the rigid-plastic FEM based on the membrane theory. The auto-body panel material is assumed to possess normal anisotropy and to obey Hill's new yield criterion and its associated flow rule. A method of contact treatment is proposed in which the skew boundary condition for arbitarily shaped tools is successively used during iteration. Deformation of each section of trunk-lid panel is simulated and composed to get the three-dimensional shape by using CAD technique. It was shown that the composition of the two-dimensional section analysis gives almost the same results as the full three-dimensional analysis.

  • PDF

Sea Surface Cold Water near the Southeastern Coast of Korea: Wind Effect (한국(韓國) 남동해안(南東海岸)부근의 해표면(海表面) 냉수(冷水) : 바람의 영향(影響))

  • Byun, Sang-Kyung
    • 한국해양학회지
    • /
    • v.24 no.3
    • /
    • pp.121-131
    • /
    • 1989
  • Cold water observed at sea surface near the southeastern coast of Korea in summers 1982 and 1983 was studied by using data of hydrography, sea level, wind and satellite image. In summer season when water column shows 3-layered structure a "full" upwelling occurs by southwesterly transient wind continuing for several days. During upwelling event, surface water of high temperature moved offshore, middle water of low temperature outcropped to the sea surface, and sea level was lowered, however, equilibrium depth of surface layer was not changed. It may be concluded that cold water at the surface originates from middle layer and strong surface front is a result of surfacing of seasonal thermocline. In order to see the relationship between position of surface front and wind input, a model of Csanady (1982) was applied in a rigid lid approximation. The results show that frontal position can be determined by wind input and water structure near the southeastern coast of Korea. Cold water in summer can appear at the sea surface only when there is wind larger than a minimum wind impulse of order $10m^2/sec$.

  • PDF

Packaging technology of fresh-cut produce (신선편의식품 포장기술)

  • Kim, Ji Gang
    • Food Science and Industry
    • /
    • v.50 no.2
    • /
    • pp.12-26
    • /
    • 2017
  • Processing steps such as washing and cutting, involved in preparing fresh-cut produce causes tissue damage, leading to rapid quality deterioration. Major defects of fresh-cut produce are discoloration, softening, off-odor development, and microbial growth. Packaging of fresh-cut produce has been changed to reduce these quality problems. Flexible packaging film is widely used to pack fresh-cut produce. Vacuum packaging was the popular packaging method in the beginning of fresh-cut industry in Korea. Vacuum packaging creates high $CO_2$ and low $O_2$ levels to control browning of fresh-cut produce. However, these conditions induce some visual defects and off-odor development. Discoloration problem was also found when fresh-cut produce was packaged with conventional packaging film or plastic tray. Modified atmosphere (MA) packaging is effective for prolonging shelf-life of fresh-cut produce by decreasing $O_2$ and increasing $CO_2$ concentration in the package. Retail MA packaging using different oxygen transmission rate (OTR) film and micro-perforated film has started to be applied to fresh-cut produce in Korea. Proper MA package design that provides optimum range of $O_2$ and $CO_2$ partial pressures is one of the major challenges in the industry. An initial package flushing with $N_2$ or an low $O_2$/high $CO_2$ atmosphere is also used to more rapidly establish steady-state MA condition. Film OTR and $O_2$ flushing affects the fermentative volatile production, off-odor development, electrolyte leakage, discoloration, $CO_2$ injury, microbial population of fresh-cut produce. There is also a demand for convenient packaging to attract consumers. Rigid fresh-cut produce container for retail market has increased since the packaging provides excellent protection from physical damage during transport. Rigid tray used as actual serving vessel for the consumer is increasing in Korea. The tray with flexible lid to wrap or seal fresh-cut produce is more and more gaining popularity. Further practical technology to control quality change and microbial growth for each fresh-cut product has been studied since various fresh-cut items were required. The fresh-cut industry also focuses on searching for more convenient and environmentally friendly packaging.

On the Springing Response of Ships with Shallow Draft and Large Breadth (천홀수 광폭선의 스프링잉 응답 해석)

  • 정종진;박인규
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.2
    • /
    • pp.55-60
    • /
    • 2004
  • This paper describes the estimation method of hull girder response of ships due to springing. To this aim, nonlinear springing effect on the hull girder is evaluated including vertical, horizontal, and torsional deformation of the hull. The Timoshenko beam model is used to calculate the stress distribution on the hull girder. The quadratic strip method is employed to calculate the hydrodynamic forces and moments on the hull. In order to remove the irregular frequencies, 'rigid lid'is adopted on the hull free surface level and hydrodynamic coefficients are interpolated for asymptotic values. The results of example calculation show a reasonable agreement with previous results for both symmetric and anti-symmetric responses.

Dynamic responses of a riser under combined excitation of internal waves and background currents

  • Lou, Min;Yu, Chenglong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.3
    • /
    • pp.685-699
    • /
    • 2014
  • In this study, the dynamic responses of a riser under the combined excitation of internal waves and background currents are studied. A modified Taylor-Goldstein equation is used to calculate the internal waves vertical structures when background currents exist. By imposing rigid-lid boundary condition, the equation is solved by Thompson-Haskell method. Based on the principle of virtual work, a nonlinear differential equation for riser motions is established combined with the modified Morison formula. Using Newmark-${\beta}$ method, the motion equation is solved in time domain. It is observed that the internal waves without currents exhibit dominated effect on dynamic response of a riser in the first two modes. With the effects of the background currents, the motion displacements of the riser will increase significantly in both cases that wave goes along and against the currents. This phenomenon is most obviously observed at the motions in the first mode.

An Estimation of Springing Responses for Recent Ships

  • Park, In-Kyu;Kim, Jong-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.6 s.67
    • /
    • pp.58-63
    • /
    • 2005
  • The estimation of springing responses for recent ships is carried out, and application to a ship design is described. To this aim, springing effects on hull girder were re-evaluated, including non-linear wave excitations and torsional vibrations of the hull. The Timoshenko beam model was used to calculate stress distribution on the hull girder, using the superposition method. The quadratic strip method was employed to calculate the hydrodynamic forces and moments on the hull. In order to remove the irregular frequencies, we adopted 'rigid lid' on the hull free surface level, and addedasymptotic interpolation along the high frequency range. Several applications were carried out on the following existing ships: The Bishop and Price's container ship, S-175 container ship, large container, VLCC, and ore carrier. One of them is compared with the ship measurement result, while another with that of the model test. The comparison between the analytical solution and the numerical solution for a homogeneous beam-type artificial ship shows good agreement. It is found that Most springing energy comesfrom high frequency waves for the ships having low natural frequency and North Atlantic route etc. Therefore, the high frequency tail of the wave spectrum should be increased by $\omega$$\^{-3}$ instead of $\omega$$\^{-4}$ or $\omega$$\^{-5}$ for the springing calculation.

An Estimation of Springing Responses for Recent Ships

  • Park In-Kyu;Lee Soo-Mok;Jung Jong-Jin;Yoon Myung-Cheol
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.173-178
    • /
    • 2004
  • The estimation of springing responses for recent ships are carried out and application to a ship design are described. To this aim, springing effects on hull girder were re-evaluated including non-linear wave excitations and torsional vibrations of the hull. The Timoshenko beam model was used to calculate stress distribution on the hull girder by the superposition method. The strip method was employed to calculate the hydrodynamic forces and moments on the hull. In order to remove the irregular frequencies, we adopted 'rigid lid' on the hull free surface level and added asymptotic interpolation along the high frequency range. Several applications to the existing ships were carried out. They are Bishop and Price's container ship, S-175 container ship, large container, VLCC and ore carrier. One of them is compared with ship measurement result while another with that of model test. Comparison between analytical solution and numerical one for homogeneous beam type artificial ship shows good agreement. It is found that most springing energy came from high frequency waves for the ships having low natural frequency and North Atlantic route etc. Therefore, the high frequency tail of the wave spectrum should be increased by $\omega^{-3}\;instead\;of\;\omega^{-4}\;or\;\omega^{-5}$ for springing calculation.

  • PDF