• 제목/요약/키워드: Rigid Body Dynamics Analysis

검색결과 94건 처리시간 0.022초

RecurDyn 솔버에 적용되어 있는 유연 다물체 동역학에 대한 해석기술 (Analysis Method for Multi-Flexible-Body Dynamics Solver in RecurDyn)

  • 최주환;최진환
    • 대한기계학회논문집 C: 기술과 교육
    • /
    • 제3권2호
    • /
    • pp.107-115
    • /
    • 2015
  • 유연 다물체 동역학은 실제 시스템을 가능한 유사하게 수치화하여 해석할 수 있기 때문에 일반 동역학 연구에 대한 차세대 주제로 각광을 받고 있다. 이러한 유연 다물체 동역학에 대한 해석 기술은 리커다인이라는 상용 소프트웨어에 효과적으로 적용되어 있는데, 특히 강체와 유연체를 통합하여 하나의 솔버에서 해석을 할 수 있는 특징을 가지고 있다. 본 논문에서는 이러한 리커다인의 유연 다물체 동역학 솔버의 기술들을 살펴보고자 한다. 기본적으로 리커다인의 유연 다물체 동역학 해법은 동시회전 기법을 사용하는 증분 유한요소 정식화를 기존의 순환공식을 이용한 동역학 정식화에 결합함으로써 구현되어 진다. 이 과정에서 강체와 유연체 사이의 조인트나 힘 요소 등의 효율적 처리를 위해 가상 바디와 유연체 조인트 개념이 사용된다.

주변 유체를 고려한 선박 충돌해석 기법 연구 (Ship Collision Analysis Technique considering Surrounding Water)

  • 이상갑;이정대
    • 대한조선학회논문집
    • /
    • 제44권2호
    • /
    • pp.166-173
    • /
    • 2007
  • Collision analysis problems between ship to ship can be generally classified into the external mechanics(outer dynamics) and internal mechanics(inner dynamics). The former can be also dealt with the concept of fluid-structure interaction and the use of rigid body dynamic program, depending on the ways handling the hydrodynamic pressure due to surrounding water. In this study, full scale ship collision simulation was carried out, such as a DWT 75,000 ton striking ship collided at right angle to the middle of a DWT 150,000 struck ship with 10 knots velocity, coupling MCOL, a rigid body mechanics program for modeling the dynamics of ships, to hydrocode LS-DYNA. It could be confirmed that more suitable damage estimation would be performed in the case of the collision simulations with consideration of surrounding water through the comparison with the collision simulation results of fixed struck ships without it. Through this study, the opportunity could be obtained to establish a more effective ship collision simulation technique between ship to ship.

3차원 부유체의 유체-물체 연성해석 (FLUID-BODY INTERACTION ANALYSIS OF FLOATING BODY IN THREE DIMENSIONS)

  • 고광수;안형택
    • 한국전산유체공학회지
    • /
    • 제20권2호
    • /
    • pp.103-108
    • /
    • 2015
  • Fluid-body interaction analysis of floating body with six degree-of-freedom motion is presented. In this study, three-dimensional incompressible Navier-Stokes equations are employed as a governing equation. The numerical method is based on a finite-volume approach on a cartesian grid together with a fractional-step method. To represent the body motion, the immersed boundary method for direct forcing is employed. In order to simulate the coupled six degree-of-freedom motion, Euler's equations based on rigid body dynamics are utilized. To represent the complex body shape, level-set based algorithm is utilized. In order to describe the free surface motion, the volume of fluid method utilizing the tangent of hyperbola for interface capturing scheme is employed. This study showed three different continuums(air, water and body) are simultaneously simulated by newly developed code. To demonstrate the applicability of the current approach, two different problems(dam-breaking with stationary obstacle and water entry) are simulated and all results are validated.

DADS를 이용한 유연 다물체의 동응력 해석 (Dynamic Stress Analysis of Flexible Multibody using DADS)

  • 안기원;서권희;황원걸
    • 한국자동차공학회논문집
    • /
    • 제6권6호
    • /
    • pp.107-112
    • /
    • 1998
  • A great deal of time and effort are required to evaluate the safety and durability of a vehicle structure in the vehicle development stage. It is difficult to find the reasons for cracks which occur in the body and frame of a vehicle during tests. Recently computer aided engineering techniques have been utilized to solve the problems of safety and durability of vehicles. In this study, a dynamic stress analysis is performed on the frame of the vehicle by rigid and flexible multibody dynamics techniques. The result of the analysis is compared to that of the actual test. The full vehicle dynamic models for the rigid and flexible bodies are developed by DADS package. The modal coordinate system is used to save time for the dynamic stress analysis. The flexible multibody dynamic models have 12 normal modes considering the flexibility of the frame. Dynamic stresses arc calculated by relating the stress influence coefficients and the applied forces.

  • PDF

Dynamic Analysis of a Chain of Rigid Rods

  • Attia, Hazem Ali
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제8권2호
    • /
    • pp.75-86
    • /
    • 2004
  • In this study, a recursive algorithm for generating the equations of motion of a chain of rigid rods is presented. The methods rests upon the idea of replacing the rigid body by a dynamically equivalent constrained system of particles. The concepts of linear and angular momentums are used to generate the rigid body equations of motion without either introducing any rotational coordinates or the corresponding transformation matrices. For open-chain, the equations of motion are generated recursively along the serial chains. For closed-chain, the system is transformed to open-chain by cutting suitable kinematic joints with the addition of cut-joints kinematic constraints. An example of a closed-chain of rigid rods is chosen to demonstrate the generality and simplicity of the proposed method.

  • PDF

차량 동특성에 대한 프레임의 유연성 효과 (Flexibility Effects of Frame for Vehicle Dynamic Characteristics)

  • 이상범
    • 한국공작기계학회논문집
    • /
    • 제11권2호
    • /
    • pp.80-86
    • /
    • 2002
  • Previous method of computer simulation to predict the dynamic response of a vehicle has been based on the assumption that vehicle structure is rigid. If the flexibility of the vehicle structure becomes too large to ignore, rigid body assumption will no longer give good estimation of the dynamic characteristics. Therefore, in order to predict more precise vehicle dynamic characteristics, flexible multi-body dynamic analysis of a vehicle is necessary. This paper investigates dynamic characteristics of vehicle systems with flexible frames numerically. Joint reaction forces, vertical accelerations, pitch accelerations are analyzed for the vehicle systems with various flexible frames using multi-body dynamic analysis code and finite element analysis code.

공작기계의 유연 다물체 동역학 및 제어기 연계해석 (Coupled Flexible Multi-Body Dynamics and Controller Analysis of Machine Tool)

  • 김동만;김동현;박강균;최현철
    • 한국생산제조학회지
    • /
    • 제19권3호
    • /
    • pp.307-312
    • /
    • 2010
  • In this study, advanced computational technique for mechatronic analysis has been developed for the efficient design and test of typical machine tool models. Flexible multi-body dynamic (FMBD) analysis method combined with motion controller including control logics is used to simulate typical operation conditions. The present FMBD machine tool model is composed of flexible column structure, rigid body spindle, vertical motion guide (arm) and screw elements. Driving motor clement with rotating degree-of-freedom is interconnected and governed by the designed Matlab Simulink control logic, and then the position of the spindle is feedback into the control logic. It is practically shown from the results that the investigation of designed machine tools with controller can be effectively conducted and verified.

자동창고용 스태커 크레인의 동특성 해석(II) (Dynamic Characteristics Analysis of Stacker Crane for Automatic Warehouse(II))

  • 김종준;이윤식;신상룡;이호택;조대하
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.436-441
    • /
    • 2001
  • In this paper, stacker crane is modeled as rigid elements and discrete flexible beam connections by kinematics & dynamics solver package program instead of deriving the equations of motion which describes the total dynamics of the system. For the simulation of structural dynamics, ADAMS, a software for the simulation of multiple rigid body dynamics, is used. Some kinds of works are fulfilled to examine the dynamic characteristics of system. In order to verify the analysis method, the results of simulation and experiment are compared.

  • PDF

Numerical Analysis on Separation Dynamics of Strap-On Boosters in the Dense Atmosphere

  • Choi, Seongjin;Ko, Soon-Heum;Kim, Chongam;Rho, Oh-Hyun;Park, Jeong-joo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제2권2호
    • /
    • pp.1-18
    • /
    • 2001
  • A numerical technique for simulating the separation dynamics of strap-on boosters jettisoned in the dense atmosphere is presented. Six degree of freedom rigid body equations of motion are integrated into the three-dimensional unsteady Navier-Stokes solution procedure to determine the dynamic motions of strap-ons. An automated Chimera overlaid grid technique is introduced to achieve maximum efficiency for multi-body dynamic motion and a domain division technique is implemented in order to reduce the computational cost required to find interpolation points in the Chimera grids. The flow solver is validated by comparing the computed results around the Titan IV launch vehicle with experimental data. The complete analysis process is then applied to the. H-II launch vehicle, the central rocket in japans space program, the CZ-3C launch vehicle developed in China and the KSR-III, a three-stage sounding rocket being developed in Korea. From the analyses, separation trajectories of strap-on boosters are predicted and aerodynamic characteristics around the vehicles at every time interval are examined. In addition, separation-impulse devices generally introduced for safe separation of strap-ons are properly modeled in the present paper and the jettisoning force requirements are examined quantitatively.

  • PDF

Aeroelastic stability analysis of a two-stage axially deploying telescopic wing with rigid-body motion effects

  • Sayed Hossein Moravej Barzani;Hossein Shahverdi
    • Advances in aircraft and spacecraft science
    • /
    • 제10권5호
    • /
    • pp.419-437
    • /
    • 2023
  • This paper presents the study of the effects of rigid-body motion simultaneously with the presence of the effects of temporal variation due to the existence of morphing speed on the aeroelastic stability of the two-stage telescopic wings, and hence this is the main novelty of this study. To this aim, Euler-Bernoulli beam theory is used to model the bending-torsional dynamics of the wing. The aerodynamic loads on the wing in an incompressible flow regime are determined by using Peters' unsteady aerodynamic model. The governing aeroelastic equations are discretized employing a finite element method based on the beam-rod model. The effects of rigid-body motion on the length-based stability of the wing are determined by checking the eigenvalues of system. The obtained results are compared with those available in the literature, and a good agreement is observed. Furthermore, the effects of different parameters of rigid-body such as the mass, radius of gyration, fuselage center of gravity distance from wing elastic axis on the aeroelastic stability are discussed. It is found that some parameters can cause unpredictable changes in the critical length and frequency. Also, paying attention to the fuselage parameters and how they affect stability is very important and will play a significant role in the design.