• Title/Summary/Keyword: Rigid Bearing

Search Result 197, Processing Time 0.024 seconds

A Study on the Stiffness of Tire (타이어의 강성계수에 관한 고찰)

  • 이상선;반재삼;김항우;조규종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.886-889
    • /
    • 2002
  • Finite Element Method for 3-D static loaded passenger car tire on the rigid surface is performed for studying the stiffness of tire to compare with experimental data. The tire elements used for FEM are defined each component to allow an easy change for the design parameters. Also, a hyperelastic material which is composed of tread and sidewall has been used to consider a large deformation of rubber components. The orthotropic characters of rubber-cord composite materials are used as well. The air pressure, a vertical and a lateral load are applied step by step and iterated by Modified Newton method for geometric and boundary condition nonlinear simulation. This study shows nonlinear analysis method for tire and the bearing capacity of tire due to the external force.

  • PDF

Dynamic Analysis of the Power Transmission System in an Industrial Robot (산업용 로봇 손목의 동력 전달계에 대한 동특성 해석)

  • Kim, Woo-Hyung;Chung, Jin-Tai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.9
    • /
    • pp.913-919
    • /
    • 2008
  • Dynamic characteristics of a wrist power transmission of an industrial robot are studied. The wrist power transmission has complex structure characteristics, because it is composed with several shafts and gear system. We used an analytical method to investigate the dynamic characteristics. An analytical model is a rigid model which is composed with masses and springs. Both bearing and gear contact model represent equivalent stiffness springs which are determined by the experiment. In order to investigate the dynamic tendency of the robot wrist power transmission, we simulate the analytical model. There is a dynamic analysis tool which is called the RecurDyn. To verify the analytic results, we experiment a signal analysis which is an overall noise level of the robot. By the parametric study of the element of the robot, we study an improvement method of dynamic characteristics.

FE assessment of dissipative devices for the blast mitigation of glazing façades supported by prestressed cables

  • Amadioa, Claudio;Bedon, Chiara
    • Structural Engineering and Mechanics
    • /
    • v.51 no.1
    • /
    • pp.141-162
    • /
    • 2014
  • The paper focuses on the dynamic response of a blast-invested glass-steel curtain wall supported by single-way pretensioned cables. In order to mitigate the critical components of the façade from severe structural damage, an innovative system able to absorb and dissipate part of the blast-induced stresses in the critical façade components is proposed. To improve the blast reliability of the studied glazing system, specifically, rigid-plastic and elastoplastic devices are introduced at the base and at the top of the vertical bearing cables. Several combinations and mechanical calibrations of these devices are numerically investigated and the most structurally and economically advantageous solution is identified. In conclusion, a simple analytical formulation totally derived from energetic considerations is also suggested for a preliminary estimation of the maximum dynamic effects in single-way cable-supported façades subjected to high-level blast loads.

Stability Analysis of High-speed Driveshafts under the Variation of the Support Conditions (초고속 구동축의 지지 조건에 따른 안정성 분석)

  • Shin, Eung-Su
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.40-46
    • /
    • 2011
  • This paper is to investigate the effects of the asymmetrical support stiffness on the stability of a supercritical driveshaft with asymmetrical shaft stiffness and anisotropic bearings. The equations of motion is derived for a system including a rigid disk, a massless flexible asymmetric shaft, anisotropic bearings and a support beam. The Floquet theory is applied to perform the stability analysis with the variation of the support stiffness, the shaft asymmetry, the shaft damping and the shaft speed. The results show that the asymmetric support stiffness is closely related to the stability caused by primary resonance as well as the supercritical operation. First, the stiffness variation can stabilize the system around primary resonance by weakening the parametric resonance from the shaft asymmetry. Second, it also improve the stability characteristics at a supercritical operation when the support stiffness is not so high relative to the shaft stiffness.

Steady State Respknse of a Rotor Supported on Cavitated Squeeze Film Dampers (공동 스퀴즈 필름 댐퍼에 지지된 회전체의 정상상태 응답 해석)

  • 정시영;정재천;심상규
    • Journal of KSNVE
    • /
    • v.2 no.3
    • /
    • pp.213-222
    • /
    • 1992
  • The effect of cavitation on the synchronous steady state response of a single rotor supported on cavitated squeeze film dampers executing a circular orbit is investigated theoretically. The Swift-Stieber boundary conditions and a long bearing approximation are utillized to evaluate the direct and the cross coupled damping coefficients of a cavitated squeeze film damper. For typical design parameters, frequency response curves are presented here to exhibit the effect of cavitation on the imbalance response and transmissibilities for both a flexible rotor and a rigid rotor. Investigations show that cavitation occured in a squeeze film damper produces bistable jump phenomena and deteriorates the performance of a squeeze film damper. This arises from that the large cavity causes substantial increment of the cross coupled damping which has radial stiffening effect. Furthermore, the large cavity causes the decrement of the direct damping which has pure damping effect. It is also observed that in the absence of cavitation, both rotor excursion amplitude and imbalance transmissibilities are very well damped.

  • PDF

A Study on the Vibration Reduction of an Automobile Fuel Pump (자동차용 연료펌프의 진동 저감에 대한 연구)

  • Kim, Byeong Jin;Won, Hong In;Lee, Seong Won;Park, Sang Jun;Chung, Jintai
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.772-777
    • /
    • 2013
  • This article presents the reduction of vibration generated by an automobile fuel pump. In order to analysis the vibration of the fuel pump, a simplified dynamic model is established, which is composed of a rigid rotor and a equivalent springs. The equivalent stiffnesses of the upper and lower assemblies are evaluated by the comparison of modal testing results and the finite element analysis. the stiffness for the oil film of the journal bearing is extracted by using Reynold's equation. In addition, the time responses for the vibration of the fuel pump are computed by using a commercial multi-body dynamics software, RecurDyn. Based on these results, some design suggestions are proposed to reduce the vibration of an automobile fuel pump.

  • PDF

Evaluation Method of NFR Slider Using Modal Analysis Method and Instrumental Variable Method (모드해석법과 보조변수법을 이용한 NFR 슬라이더 평가방법)

  • 안채헌;임경화
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.688-693
    • /
    • 2002
  • Identification method is formulated to evaluate the dynamic characteristics of air bearings under NFR(Near Field Recording) sliders. Impulse responses and frequency response functions of NFR sliders are obtained on numerical non-linear models including rigid motion of slider and fluid motion of air bearing under the slider. Modal parameters and system parameters are identified by modal analysis method and instrumental variable method. The parameters of sliders are utilized to evaluate the dynamic characteristics of air bearings. Also, this study shows the difference between the dynamic characteristics of NFR and HDD slides, and squeeze effect of air bearings.

  • PDF

The Rotordynamic Analysis of TurboPump System for 9.5ton thrust Liquid Rocket Engine (9.5톤급 액체추진엔진용 터보펌프 시스템의 로터다이나믹 해석)

  • 양홍준;김경호;김영수;우유철
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.15-18
    • /
    • 2001
  • In this paper, we investigate the rotordynamic characteristics of turbopump system for 9.5ton thrust liquid rocket engine. A finite element method is used to analyze the vibratior characteristics of a rotor-bearing system. The turbopump rotating system is modeled by shaft with sixty elements, nine rigid disks, four ball bearings and four floating ring seals. The calculation results show that the margin of 1st critical speed is increased from 12% to 68% by use of elastic damping ring. In addition, the margin of the 2nd critical speed near the operating speed is increased from 30% to 63% by the stiffness and damping of floating ring seals.

  • PDF

A Study on Nonlinear FEM Analysis for the Effective Widths of T-shaped Structural Walls with Different Aspect Ratios (형상비가 다른 T형벽체의 유효폭 산정을 위한 비선형 FEM 해석)

  • 조남선;하상수;오영훈;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.67-74
    • /
    • 2001
  • In domestic, irregular walls such as T, L, H and Box shapes are considered as rectangular wall in the design of bearing wall apartment building. The strengths of walls, therefore, can be underestimated in case of using the current design process. Irregular walls are connected to each other as rigid joint so that part of the load can be resisted by the wall perpendicular to the load direction. This resistance can be caused by the effective width of perpendicular wall. This additional resistance by the perpendicular wall increases the strength of structural walls. The objective of this study is to evaluate the effective widths of flanged walls with different aspect ratios by using FEM analyses. the results from finite element method are compared with effective flange widths of some code provisions.

  • PDF

Some practical considerations in designing underground station structures for seismic loads

  • Gu, Jianzhong
    • Structural Engineering and Mechanics
    • /
    • v.54 no.3
    • /
    • pp.491-500
    • /
    • 2015
  • Under seismic loading, underground station structures behave differently from above ground structures. Underground structures do not require designated energy dissipation system for seismic loads. These structures are traditionally designed with shear or racking deformation capacity to accommodate the movement of the soil caused by shear waves. The free-field shear deformation method may not be suitable for the design of shallowly buried station structures with complex structural configurations. Alternatively, a station structure can develop rocking mechanisms either as a whole rigid body or as a portion of the structure with plastic hinges. With a rocking mechanism, station structures can be tilted to accommodate lateral shear deformation from the soil. If required, plastic hinges can be implemented to develop rocking mechanism. Generally, rocking structures do not expect significant seismic loads from surrounding soils, although the mechanism may result in significant internal forces and localized soil bearing pressures. This method may produce a reliable and robust design of station structures.