• Title/Summary/Keyword: Rietveld

Search Result 168, Processing Time 0.029 seconds

Crystallographic Effects of Larger Indium Ion Substitution in NiFe2-xInxO4 (x = 0, 0.2, 0.5, and 1.0) System

  • Yoon, Sung-Hyun;Yoon, Chang-Sun;Kim, Byung-Ho
    • Journal of Magnetics
    • /
    • v.10 no.1
    • /
    • pp.23-27
    • /
    • 2005
  • The crystallographic and magnetic properties of a series of substitutions in nickel ferrite where the Fe3+ is replaced with In3+ have been investigated using X-ray diffraction (XRD) and Mössbauer spectroscopy. Information on the exact crystalline structure, lattice parameters, bond lengths and bond angles were obtained by refining their XRD profiles by a Rietveld method. All the crystal structures were found to be cubic with the space group Fd/3m. The lattice constants increased with In3+ concentration. The expansion of the tetrahedron was outstanding, indicative of the tetrahedral (A) site preference of larger indium ion. The Mossbauer spectra showed two sets of sextuplet originating from ferric ions occupying the tetrahedral sites and the octahedral (B) sites under the Neel temperature TN. Regardless of the composition x, the electric quadrupole splitting was zero within the experimental error. At x = 0.2, the magnetic hyperfine fields increased slightly, which meant that the nonmagnetic indium ions occupied preferentially the A-site. At the same time, the intensity of the B-site sub-spectra decreased markedly at the elevated temperature, indicating that the occupation of the A site by indium induced a considerable perturbation on the B site.

Synthesis of Iron Oxide Using Ferrous Sulfate and Ammonia Water (황산제일철과 암모니아수를 이용한 산화철 합성)

  • Kim, Sam-Joong;Eom, Tae-Hyoung;Wang, Wei;Suhr, Dong-Soo
    • Korean Journal of Materials Research
    • /
    • v.18 no.4
    • /
    • pp.218-221
    • /
    • 2008
  • A $Fe(OH)_2$ suspension was prepared by mixing iron sulfate and a weak alkali ammonia solution. Following this, iron oxides were synthesized by passing pure oxygen through the suspension (oxidation). The effects of different reaction temperatures ($30^{\circ}C$, $50^{\circ}C$, $70^{\circ}C$) and equivalent ratios ($0.1{\sim}10.0$) on the formation of iron oxides were investigated. An equilibrium phase diagram was established by quantitative phase analysis of the iron oxides using the Rietveld method. The equilibrium phase diagram showed a large difference from the equilibrium phase diagram of Kiyama when the equivalent ratio was above 1, and single $Fe_3O_4$ phase only formed above an equivalent ratio 2 at all reaction temperatures. Kiyama synthesized iron oxide using iron sulfate and a strong alkali NaOH solution.

Hydrogenation Characteristics of the Matrix and the Second Phases of Ti-M-V Alloys (Ti-M-V 합금의 기지 및 제 2상의 수소화 특성)

  • Cho, Sung-Wook
    • Journal of Hydrogen and New Energy
    • /
    • v.14 no.2
    • /
    • pp.97-104
    • /
    • 2003
  • The structural transitions of the matrix and the second phases of $Ti_{1.0}Mn_{0.9}V_{1.1}$ and $Ti_{1.0}Cr_{1.5}V_{1.7}$ alloys upon hydrogenation have been investigated at 293K. The effect of hydrogen isotope on their crystal structures has been also discussed. The crystal structures, Phase abundance and lattice parameters of the hydrides were determined by the Rietveld method using X-ray diffraction data. At the experimental temperature, the $Ti_{1.0}Mn_{0.9}V_{1.1}$ alloy and $Ti_{1.0}Cr_{1.5}V_{1.7}$ alloy revealed different structural transition processes upon hydrogenation although the crystal structures of these two alloys are both BCC at room temperature. The second phases such as Ti-rich phase with $NiTi_2$ structure and $\alpha$-Ti with HCP structure absorbed hydrogen at relatively low hydrogen pressures and the phase abundance remained almost constant. This means that it is desirable to decrease the amount of the second phases as far as possible in order to increase the effective hydrogen storage capacities of the alloys. The crystal structures of corresponding isotope hydrides, the phase abundance and the lattice parameters did not depend on the kind of hydrogen isotope, but only on the hydrogen content.

Hydrogen Storage Properties of Hydriding-Dehydriding Cycled Magnesium-Nickel-Iron Oxide Alloy

  • Song, Myoung Youp;Kwon, Sung Nam;Park, Hye Ryoung;Kim, Byoung-Goan
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.2
    • /
    • pp.171-175
    • /
    • 2012
  • By measuring the absorbed hydrogen quantity as a function of the number of cycles, the cycling properties of the Mg-15 wt%Ni-5 wt%$Fe_2O_3$ alloy were investigated. The absorbed hydrogen quantity decreased as the number of cycles increased. The $H_a$ value varied almost linearly with the number of cycles. The maintainability of absorbed hydrogen quantity at n=100 was 89.0% for the hydriding reaction time of 10 min. After the $150^{th}$ hydriding-dehydriding cycle, Mg, $Mg_2Ni$, $Mg(OH)_2$, MgO, and Fe were observed. The phases were analyzed by Rietveld analysis from the XRD patterns of the Mg-15 wt%Ni-5 wt%$Fe_2O_3$ alloy after 150 hydriding-dehydriding cycles. The crystallite size and strain of Mg were then estimated with the Williamson-Hall technique.

Exploration of structural, thermal and spectroscopic properties of self-activated sulfate Eu2(SO4)3 with isolated SO4 groups

  • Denisenko, Yu.G.;Aleksandrovsky, A.S.;Atuchin, V.V.;Krylov, A.S.;Molokeev, M.S.;Oreshonkov, A.S.;Shestakov, N.P.;Andreev, O.V.
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.109-116
    • /
    • 2018
  • $Eu_2(SO_4)_3$ was synthesized by chemical precipitation method and the crystal structure was determined by Rietveld analysis. The compound crystallizes in monoclinic space group C2/c. In the air environment, $Eu_2(SO_4)_3$ is stable up to $670^{\circ}C$. The sample of $Eu_2(SO_4)_3$ was examined by Raman, Fourier-transform infrared absorption and luminescence spectroscopy methods. The low site symmetry of $SO_4$ tetrahedra results in the appearance of the IR inactive ${\nu}_1$ mode around $1000cm^{-1}$ and ${\nu}_2$ modes below $500cm^{-1}$. The band intensities redistribution in the luminescent spectra of $Eu^{3+}$ ions is analyzed in terms of the peculiarities of its local environment.

Structural Characterization of the (TEX)$Sr_2Co_0.5Nb(Ta)_0.5O_4$(/TEX) and (TEX)$Sr_3CoNb(Ta)O_7$(/TEX)

  • Jo, Han Sang;Ri-Zhu Yin;Ryu, Gwang Hyeon;Yu, Cheol Hyeon
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.7
    • /
    • pp.679-684
    • /
    • 2000
  • The Sr2Co0.5Nb(Ta)0.5O4 and Sr3CoNb(Ta)O7 compounds, both with Ruddlesden-Popper structures, have been synthesized by the ceramic method at $1150^{\circ}C$ under atmospheric pressure. The crystallographic structure of the compounds was assigned to the tetr agonal system with space group 14/mmm by X-ray diffraction(XRD) Rietveld refinement. The reduced lattice volume and lattice parameters increased as the Ta with 5d substitutes for the Nb with 4d in the compounds. The Co/Nb(Ta)O bond length has been determined by X-ray absorption spectroscopic(EXAFS/XANES) analysis and the XRD refinement. The CoO6,octahedra were tetragonally distorted by elongation of Co-O bond along the c-axis. The magnetic measurement shows the compounds Sr2Co0.5Nb(Ta)0.5O4 and Sr3CoNb(Ta)O7 have paramagnetic properties and the Co ions with intermediate spin sates between high and low spins in D4h symmetry. All the compounds showed semiconducting behavior whose electrical conductivity increased with temperature up to 1000 K. The electrical conductiviy increased and the activation energy for the conduction decreased as the number of perovskite layers increased in the compounds with chemical formula An+1BnO3n+1.

Structural and electrical properties of lead free ceramic: Ba(Nd1/2Nb1/2)O3

  • Nath, K. Amar;Prasad, K.;Chandra, K.P.;Kulkarni, A.R.
    • Advances in materials Research
    • /
    • v.2 no.2
    • /
    • pp.119-131
    • /
    • 2013
  • Impedance and electrical conduction studies of $Ba(Nd_{1/2}Nb_{1/2})O_3$ ceramic prepared using conventional high temperature solid-state reaction technique are presented. The crystal symmetry, space group and unit cell dimensions were estimated using Rietveld analysis. X-ray diffraction analysis indicated the formation of a single-phase cubic structure with space group $Pm\bar{3}m$. Energy dispersive X-ray analysis and scanning electron microscopy studies were carried to study the quality and purity of compound. The circuit model fittings were carried out using the impedance data to find the correlation between the response of real system and idealized model electrical circuit. Complex impedance analyses suggested the dielectric relaxation to be of non-Debye type and negative temperature coefficient of resistance character. The correlated barrier hopping model was employed to successfully explain the mechanism of charge transport in $Ba(Nd_{1/2}Nb_{1/2})O_3$. The ac conductivity data were used to evaluate the density of states at Fermi level, minimum hopping length and apparent activation energy.

Application of a Dynamic-Nanoindentation Method to Analyze the Local Structure of an Fe-18 at.% Gd Cast Alloy

  • Choi, Yong;Baik, Youl;Moon, Byung M.;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.576-580
    • /
    • 2017
  • A dynamic nanoindentation method was applied to study an Fe-18 at.% Gd alloy as a neutron-absorbing material prepared by vacuum arc-melting and cast in a mold. The Fe-18 at.% Gd cast alloy had a microstructure with matrix phases and an Fe-rich primary dendrite of $Fe_9Gd$. Rietveld refinement of the X-ray spectra showed that the Fe-18 at.% Gd cast alloy consisted of 35.84 at.% $Fe_3Gd$, 6.58 at.% $Fe_5Gd$, 16.22 at.% $Fe_9Gd$, 1.87 at.% $Fe_2Gd$, and 39.49 at.% ${\beta}-Fe_{17}Gd_2$. The average nanohardness of the primary dendrite phase and the matrix phases were 8.7 GPa and 9.3 GPa, respectively. The fatigue limit of the matrix phase was approximately 37% higher than that of the primary dendrite phase. The dynamic nanoindentation method is useful for identifying local phases and for analyzing local mechanical properties.

Magnetic Properties and Hyperfine Interaction of BaSrCo2(Fe1-xAlx)12O22 Hexaferrite

  • Lim, Jung Tae;Kim, Chul Sung
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1679-1683
    • /
    • 2018
  • Polycrystalline $BaSrCo_2(Fe_{1-x}Al_x)_{12}O_{22}$ (x = 0.00, 0.01, 0.05, and 0.10) samples were synthesized by polymerizable complex method. Based on the Rietveld refinement, crystal structures of the samples were found to be single-phased and determined to be rhombohedral with space group of R-3m. The hysteresis curves of the samples were measured under 15 kOe at various temperatures ranging from 4.2 and 295 K. It shows that they were not saturated with increasing Al ion contents due to the reduction of magnetic anisotropy. $M_{15kOe}$ was decreased with increasing Al ions contents. We expect that non-magnetic Al ions preferentially occupy the up-spin site of $18h_{VI}$, $3b_{VI}$, and $3a_{VI}$. The $M{\ddot{o}}ssbauer$ spectra of the samples were obtained at 295 K, and analyzed with sixsextets for Fe sites corresponding to the Y-type hexaferrite crystallography sites. The <$E_Q$> shows abrupt changes, and the <$H_{hf}$> shows abrupt decreases around x = 0.05 due to the coexistence of magnetic secondary phases.

Crystal Chemistry of Yttrium-Barium-Copper Oxycarbonate Ceramics

  • Vatolin, Nikolay;Dubrovina, Iring;Balakirev, Viacimir;Zubkov, Vladimir;Tyutyunik, Alexander
    • The Korean Journal of Ceramics
    • /
    • v.6 no.2
    • /
    • pp.164-167
    • /
    • 2000
  • The barium rich region of the Y-Ba-Cu-O-C system includes a tetragonal perovskite-like phase, which possesses a wide homogeneity region toward yttrium, copper and carbonate ion on the one hand, and toward oxygen, on the other hand. Accounting for vacancies ($\square$-vacancy) this phase could be described by the general formula per unit cell: {Ba$_8$}[Y$_{3-z}$Cu$_{5-x}$$(CO_3)_n$ $\square$$_{x+x-n}$]O$_{y{\pm}{\delta}y}$ (*). Here, cube-octahedral sites are represented in braces, while quasioctahedral ones with proper octahedral (Y, Cul), square (Cu2) and triangular (CO$_3$) configuration are shown in square brackets. The formula (*) was confirmed by full-profile Rietveld refinement based on X-ray diffraction data of YBa$_{5}$Cu$_2$O$_y$ (1-5-2 phase). Homogeneity region limits of the phase (*) at 96$0^{\circ}C$ in air were determined to be -0.33$\leq$x$\leq$1.80, 0.33$\leq$z$\leq$2.00, 0$\leq$n$\leq$3.

  • PDF