• Title/Summary/Keyword: Riemannian Procrustes Analysis

Search Result 1, Processing Time 0.013 seconds

Research of Riemannian Procrustes Analysis on EEG Based SPD-Net (EEG 기반 SPD-Net에서 리만 프로크루스테스 분석에 대한 연구)

  • Isaac Yoon Seock Bang;Byung Hyung Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.45 no.4
    • /
    • pp.179-186
    • /
    • 2024
  • This paper investigates the impact of Riemannian Procrustes Analysis (RPA) on enhancing the classification performance of SPD-Net when applied to EEG signals across different sessions and subjects. EEG signals, known for their inherent individual variability, are initially transformed into Symmetric Positive Definite (SPD) matrices, which are naturally represented on a Riemannian manifold. To mitigate the variability between sessions and subjects, we employ RPA, a method that geometrically aligns the statistical distributions of these matrices on the manifold. This alignment is designed to reduce individual differences and improve the accuracy of EEG signal classification. SPD-Net, a deep learning architecture that maintains the Riemannian structure of the data, is then used for classification. We compare its performance with the Minimum Distance to Mean (MDM) classifier, a conventional method rooted in Riemannian geometry. The experimental results demonstrate that incorporating RPA as a preprocessing step enhances the classification accuracy of SPD-Net, validating that the alignment of statistical distributions on the Riemannian manifold is an effective strategy for improving EEG-based BCI systems. These findings suggest that RPA can play a role in addressing individual variability, thereby increasing the robustness and generalization capability of EEG signal classification in practical BCI applications.