• Title/Summary/Keyword: Ride

Search Result 946, Processing Time 0.028 seconds

Sensibility Vocabulary for 3D Stereoscopic Image Ride Film (3D입체영상 라이드 필름의 감성어휘)

  • Song, Seung-Keun;Chae, Eel-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.11
    • /
    • pp.120-129
    • /
    • 2011
  • This research aims to investigate the representative affective words and the structure among them to scrutinize user's affect revealed in the ride film based on three dimension stereoscopic image. Previous studies related to the affect were reviewed and the affect words well-suited for three dimension stereoscopic image were collected. Suitability test for two hundred six basic affect words gathered as the result was done from sixty two typical users and four experts. Seventy seven candidate affect words have been selected and by the exclusion of similarity among them, finally twenty six words were extracted from the reduction process. Consequently fifteen representative words and the structure as the network between each word were revealed by using free association test based on twenty six affect words. We propose the affect research including sensors, emotions, and affects related to moving image rather than still mage during doing research affects in most of the previous studies. The future work includes the affect space and the affect effect for ride film based on three dimension stereoscopic image. This study can be adopted practically in the production of ride films and provided with a basic design guideline.

An experimental study on constructing MR secondary suspension for high-speed trains to improve lateral ride comfort

  • Ni, Y.Q.;Ye, S.Q.;Song, S.D.
    • Smart Structures and Systems
    • /
    • v.18 no.1
    • /
    • pp.53-74
    • /
    • 2016
  • This paper presents an experimental study on constructing a tunable secondary suspension for high-speed trains using magneto-rheological fluid dampers (referred to as MR dampers hereafter), in the interest of improving lateral ride comfort. Two types of MR dampers (type-A and type-B) with different control ranges are designed and fabricated. The developed dampers are incorporated into a secondary suspension of a full-scale high-speed train carriage for rolling-vibration tests. The integrated rail vehicle runs at a series of speeds from 40 to 380 km/h and with different current inputs to the MR dampers. The dynamic performance of the two suspension systems and the ride comfort rating of the rail vehicle are evaluated using the accelerations measured during the tests. In this way, the effectiveness of the developed MR dampers for attenuating vibration is assessed. The type-A MR dampers function like a stiffness component, rather than an energy dissipative device, during the tests with different running speeds. While, the type-B MR dampers exhibit significant damping and high current input to the dampers may adversely affect the ride comfort. As part of an ongoing investigation on devising an effective MR secondary suspension for lateral vibration suppression, this preliminary study provides an insight into dynamic behavior of high-speed train secondary suspensions and unique full-scale experimental data for optimal design of MR dampers suitable for high-speed rail applications.

VEHICLE DYNAMIC SIMULATION USING A NONLINEAR FINITE ELEMENT ANALYSIS CODE

  • Yu, Y.S.;Cho, K.Z.;Chyun, I.B.
    • International Journal of Automotive Technology
    • /
    • v.6 no.1
    • /
    • pp.29-35
    • /
    • 2005
  • The structural integrity of either a passenger car or a light truck is one of the basic requirements for a full vehicle engineering and development program. The results of the vehicle product performance are measured in terms of ride and handling, durability, Noise/Vibration/Harshness (NVH), crashworthiness, and occupant safety. The level of performance of a vehicle directly affects the marketability, profitability and, most importantly, the future of the automobile manufacturer. In this study, the Virtual Proving Ground (VPG) approach has been developed to simulate dynamic nonlinear events as applied to automotive ride & handling. The finite element analysis technique provides a unique method to create and analyze vehicle system models, capable of including vehicle suspensions, powertrains, and body structures in a single simulation. Through the development of this methodology, event-based simulations of vehicle performance over a given three-dimensional road surface can be performed. To verify the predicted dynamic results, a single lane change test was performed. The predicted results were compared with the experimental test results, and the feasibility of the integrated CAE analysis methodology was verified.

OPTIMAL PREVIEW CONTROL OF TRACKED VEHICLE SUSPENSION SYSTEMS

  • Youn, I.;Lee, S.;Tomizuka, M.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.469-475
    • /
    • 2006
  • In this paper, an optimal suspension system with preview of the road input is synthesized for a half tracked vehicle. The main goal of this research is to improve the ride comfort characteristics of a fast moving tracked vehicle in order to maintain the driver's driving capability. Several different kinds of preview control algorithms are evaluated with active or semi-active suspension systems. The road information estimated from the motion of the 1st road-wheel is adequate to make the best use of the preview control algorithm for tracked vehicles. The ride-comfort characteristics of the tracked vehicle are more dependent on pitching angular acceleration than heaving acceleration. The pitching motion is reduced by the suspension system with hard outer suspensions and soft inner suspensions. Simulation results show that the performance of sky-hook algorithms for ride comfort nearly follow that of full state feedback algorithms.

Shift Pattern Fuzzy Control of Automatic Transmission for Ride Quality Improvement (승차감 향상을 위한 자동변속기의 퍼지제어)

  • Jo, Byeong-Gwan;Kim, Sin-Taek;Jo, Hyeon-Chan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.822-827
    • /
    • 2002
  • In general, jerk phenomenon appeared because of gear changing, when a vehicle starts off or climbs an incline. Therefore, it makes ride quality worse. In this paper, an optimal pattern of automatic transmission was designed using fuzzy logic in order to improve ride quality. After del eloping fuzzy rule for shift pattern control of automatic transmission, dynamic characteristics (i.e. acceleration, velocity, distance and so on) were simulated using dynamic model of a car. To do this he powertrain model of a vehicle with automatic transmission including torque converter, gear box, and final gear drive - from engine to tire - is developed.

Evaluation for the Running Safety and Ride Comfort of Steel Composite Railway Bridge (강합성 철도교량의 주행안전성 및 승차감 평가)

  • Kim, Jung-Hun;Kang, Young-Jong;Kim, Dea-Hyeok;Han, Sang-Yun;Cha, Kyung-Ryul
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2814-2820
    • /
    • 2011
  • Railway bridge, contact of vehicle needs to design considering the running safety about the running train load of the railway bridge, ride comfort and dynamic safety. Also, upper structure of the railway bridge has to satisfy design standard about moving load(train). So, the railway bridge has to satisfy the requirement for vertical acceleration of the bridge deck, vertical displacement of the bridge and face distortion, which is suggested railway design standard in Korea(2011.5.). In this study, it was investigated and evaluated to the running safety about the running train load of the railway bridge, ride comfort and dynamic safety with railway design standard for steel composite(Steel Box Girder) railway bridge considering KTX, freight train and standard train load.

  • PDF

A Study of a comfortable ride for ATO train control system in a driverless operation (ATO 무인운전 열차제어시스템의 승차감 제어 연구)

  • Park, Gie-Soo;Kim, Ja-Young;Park, Chae-Jung;Lee, Sung-Hoon;Ryou, Myung-Seon
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2292-2299
    • /
    • 2011
  • The CBTC(Communication Based Train Control) system, a recent train control system, is a wireless communication based train control system that is operated in the moving block system control by tracking trains in real time. In additioin, the system helps to increase the volume of traffic by shortening driving headways through controlling moving block system control. Furthermore, driverless modes are performed by controlling ATP(Automatic Train Protection)/ATO(Automatic Train Operation). In this paper, controllable elements in ATO driverless train control system, affecting comfortable ride, will be analysed and applied to CBTC train control system that developed by POSCO ICT. Finally, the test results of improved comfortable ride will be showed by appling the developed system to the Gyeong-san light rail transit test track.

  • PDF

Ride Quality Evaluation of Seat Suspension Adopting Controllable Damper (제어 가능한 댐퍼를 적용한 시트 현가장치의 승차감 평가)

  • Han, Young-Min;Min, Chul-Gi
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.12
    • /
    • pp.1199-1205
    • /
    • 2011
  • In the present work, a seat suspension system adopting semi-active damper is evaluated for driver's ride quality. A cylindrical type of ER(electrorheological) damper is designed and manufactured for the seat suspension of heavy vehicles. The governing equation is derived under consideration of human vibration. A sliding mode controller is then synthesized and experimentally realized on the manufactured ER seat suspension while a driver is sitting on the controlled seat. Ride quality is evaluated by fatigue decreased proficiency boundary, vibration dose value and crest factor utilizing weighted-acceleration according to ISO2631.

Fuzzy control designed GA of a electro-rheology fluid damper (전기유변유체댐퍼의 유전자알고리즘에 의해 설계된 퍼지 제어)

  • 배종인;박명관;주동우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.438-441
    • /
    • 1997
  • This paper studies a semi-active suspension with ER damper controlled Fuzzy Net Controller designed GA(Genetic Algorithm). Apparent viscosity of ERF(Electro-Rheological Fluid) can be changed rapidly by applying electric field. Semi-active suspension for ground vehicles are expected to improve ride quality with less vibration. This paper deals with a two-degree -of-freedom suspension using the ER damper for a quarter vehicle system. In this paper, the GA is applied for generating Fuzzy Net Controllers. The GA designs the optimal structure and performance of Fuzzy Net Controller having hybrid structure. Computer simulation results show that the semi-active suspension with ER damper has good performances of ride quality.

  • PDF

Non-Stationary Response of a Vehicle Obtained From a Series of Stationary Responses

  • Karacay, Tuncay;Akturk, Nizami;Eroglu, Mehmet;Ba
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1565-1571
    • /
    • 2004
  • Ride characteristics of a vehicle moving on a rough ground with changing travel velocity are analyzed in this paper. The solution is difficult due to the non-stationary characteristics of the problem. Hence a new technique has been proposed to overcome this difficulty. This new technique is employed in the analysis of ride characteristics of a vehicle with changing velocity in the time/frequency domain. It is found that the proposed technique gives successful results in modelling non-stationary responses in terms of a series of stationary responses.