• Title/Summary/Keyword: Rice seeds

Search Result 551, Processing Time 0.034 seconds

Contrasting rice sub-populations to tocols ratio associated with seed longevity

  • Lee, Jae-Sung;Kwak, Jieun;Yoon, Mi-Ra;Lee, Jeom-Sig;Hay, Fiona R.
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.31-31
    • /
    • 2017
  • Understanding the mechanism(s) to overcome or prevent seed ageing deterioration during storage is of fundamental interest to seed physiologists. Vitamin E (tocols) is known as a key metabolite to efficiently scavenge lipid peroxy radicals which cause membrane breakdown resulting in seed ageing. However, in rice research this hypothesis has been tested for very few lines only without considering intraspecific variation in genomic structure. Here, we present a correlation study between tocols and seed longevity using a diverse rice panel. Seeds of 20 rice accessions held in the International Rice Genebank at the International Rice Research Institute, representing aus, indica, temperate japonica and tropical japonica subpopulations, were used for tocols analysis (quantification of ${\alpha}$-, ${\beta}$-, ${\gamma}$-, ${\delta}$-tocopherol/tocotrienol by ultra performance liquid chromatography) and storage experiments at $45^{\circ}C$ and 10.9% seed moisture content (sample taken for germination testing every 3 days up to 60 days). To examine interactions between DNA sequences and phenotype, the 700k high-density single-nucleotide polymorphism marker data-set was utilized. Both seed longevity (time for viability to fall to 50%; $p_{50}$) and tocols content varied across subpopulations due to heterogeneity in the genetic architecture. Among eight types of tocol homologues, ${\alpha}$-tocopherol and ${\gamma}$-tocotrienol were significantly correlated with $p_{50}$ (negatively and positively, respectively). While temperate japonica varieties were most abundant in ${\alpha}$-tocopherol, indica varieties recorded 1.3 to 1.7-fold higher ${\gamma}$-tocotrienol than those of other subpopulations. It was highlighted that specific ratio of tocol homologues rather than total tocols content plays an important role in the seed longevity mechanism.

  • PDF

Physiological Responses of Rice Seedlings to Butachlor (Butachlor에 대한 벼 유묘의 생리적 반응)

  • Tsai, Wen-Fu
    • Korean Journal of Weed Science
    • /
    • v.15 no.4
    • /
    • pp.247-253
    • /
    • 1995
  • The herbicide butachlor [N-(butoxymethyl)-2-chloro-N-(2,6-di-methylphenyl) acetamide] is widely used by farmers as a tool for weed management of transplanted rice(Oryza sativa L.) in Taiwan. The herbicide did not stop germination of rice and weed seeds, but strongly inhibited the subsequent growth of young shoots and roots. The inhibition was also strong on established seedlings. However, they could recover to normal growth after the herbicide effect disappeared. Butachlor greatly decreased the endogenous indole-3-acetic acid (IAA) but increased the endogenous abscisic acid (ABA) contents of rice seedlings. Addition of lAA into growth medium (Hoagland's solution) partly relieved growth inhibition. Pretreatment of both gibberellic acid ($GA_3$) and IAA 24 hours before butachlor treatment almost completely alleviated the butachlor-interfere with GA and/or IAA metabolism or their action resulting in the growth inhibition of rice. Butachlor was readily absorbed by rice roots. During 24 hours of uptake experiment, 32% of the applied herbicide was absorbed. Pretreatment of the herbicide for 2 days did ncx affect the absorption. Of the absorbed herbicide, 80% remained in roots, only 20% transported into shoots, and more than 50% was metabolized to water soluble substances. Thin-layer chromatographic (TLC) analysis indicated that the Rf value of the most abundant metabolite was butachlor-glutathione conjugate. Rice, barnyardgrass (Echinochloa crus-galli (L.) Beauv.), and monochoria (Monochoria vaginalis Presl) seedlings contained relatively high level of non-protein thiols, while the glutathione S-transferase (GST) activity was found highest in rice, barnyardgrass the next, monochoria the lowest. The difference in GST activity among these species might be related to their sensitivity to butachlor.

  • PDF

Effects of Restricted Oxygen, Nitric oxide, and Mercuric Chloride on the Seed Germination and Early Elongation Growth of Rice

  • Yang Woon-Ho;Kim Je-Kyu;Smucker Alvin J.M.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.4
    • /
    • pp.287-294
    • /
    • 2006
  • Germination and early elongation of rice after germination were investigated in anoxic air treatment, nitric oxide gas treatment, and six concentrations of mercuric chloride solutions to determine the effects of limited oxygen environment, nitric oxide, and inhibited water flux through cell membrane in $17^{\circ}C$. Anoxic air treatment affected germination of tested six varieties very little. However root elongation rates were severely inhibited while shoot growth was affected less. Reductions in shoot and root elongations demonstrated genotypic variations. Nitric oxide delayed the germination of rice even though it didn't affect the final percent germination. Elongations of root and shoot were inhibited in nitric oxide treatment. The inhibitor effect of nitric oxide on the shoot elongation of rice was less severe, while nitric oxide completely inhibited the root emergence of rice. Concentrations of $HgCl_2$ greater than $300{\mu}M$ dramatically reduced the rate and percentage of germination when compared to distilled water treatment. The reduced percent germination showed the greatest variation among rice varieties in $500{\mu}M$ solution of mercuric chloride. Ansanbyeo, Jinheung, and Odaebyeo were affected less by $HgCl_2$, Nonganbyeo and Sangmibyeo were intermediate, and the germination of Andabyeo was greatly reduced by $HgCl_2$. Root elongation of germinated rice seedlings was more sensitive to oxygen deficits, nitric oxide, and $HgCl_2$ treatments than germination and shoot elongation. In conclusion, poor seedling establishment of rice sown in flooded paddy soils, in which the oxygen supply to the seeds is restricted, appears to the result of limited root elongation rate.

Variation in seedling growth inhibition due to Maleic Hydrazide treatment of rice(Oryza sativa) and ragi(Eleusine coracana) genotypes and its relationship with yield and adaptability

  • Das, Swarnalata;Sinha, Susil Kumar;Misra, Rama Chandra
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.215-222
    • /
    • 2008
  • Multilocation trials on 36 rice(Oryza sativa) genotypes of 3 different maturity groups were conducted at four different locations of Orissa for 3 years and 30 ragi(Eleusine coracana) genotypes of 2 different maturity groups were evaluated in three environmental conditions for 3 years. Grain yield data were subjected to stability analysis following linear regression model to estimate adaptability and stability parameters, i.e. b, and $S^2d$ Stability of performance of genotypes was also estimated by two other stability parameters viz., ecovalence W and AMMI stability value ASV. The rice and ragi genotypes of different duration groups showed wide variation in their mean yield, b, $S^2d$, W and ASV parameters. Seeds of the 36 rice and 30 ragi genotypes were treated with 500 and 100 ppm aqueous solution of maleic hydrazide(MH) for 24 hours, respectively to study MH-sensitivity. Sensitivity of genotypes to MH treatment was estimated in terms of seedling growth inhibition index(SGI). The rice and ragi genotypes showed wide differences in their MH-sensitivity in terms of SGI. Relationship of MH-sensitivity of genotypes with their yielding ability, adaptability and stability of performance was tested by contingency $x^2$ test. Low sensitivity of rice and ragi genotypes to MH in terms of SGI appeared to be good indicators of high yielding ability of genotypes. Also, low and high MH-sensitivity of genotypes would be a good indicator of better adaptability to rich and poor environments, respectively, in ragi but not in rice. Low MH-sensitivity of genotypes could be the good indicator of stability of yield performance in rice but not in ragi.

  • PDF

Legal Aspects for Quality Evaluation Standard of Plant Variety and Seed (식물 품종 및 종자의 품질평가 기준에 대한 규정현황)

  • 최근진
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47
    • /
    • pp.200-215
    • /
    • 2002
  • There are some international standards and organization controling the quality characteristics of varieties and seeds such as UPOV, OECD, ISTA, AOSA. The National List system to check variety performance such as quality characteristics of plant varieties and seeds was established by each countries. The UPOV (International Union for the Protection of New varieties of Plant) regulates the requirement of plant variety protection that is distinctness (D), uniformity (U), stability (S) (here in after called DUS), Novelty and Denomination, and some quality characteristics are used to examine the requirement of plant variety protection by each crops. OECD (Organization for Economic Cooperation Development) seed scheme regulates the seed certification for seed trade between countries. ISTA (International Seed Testing Association) and AOSA(Association for Official Seed Analyst) regulates the seed analysis standard and methods. Most of the countries in Europe has the National List system, which check the value for cultivation and use(VCU), that is to say, variety performance such as yield, quality and stress to environment. All the seeds should be enlisted in the National List before sell the seed in their country. All the quality characteristics checked variety performance are for instance, amylose and amylopectin content in rice, molting quality, $\beta$-glucan, protein in barley, protein and sugar content in soybean, sugar and amylopectin content in corn etc. Conditions for the protection of new variety of plant are DUS. Quality characteristics may be the important characteristics and used to check DUS in crop by crop. It is very important to develop a new characteristics and establish standard method fur examine the VCU and DUS test for each crop.

Structural analysis of expressed sequence tags inimmature seed of Oryza sativa L. (벼 미숙종자의 발현유전자 구조특성분석)

  • Yoon, Ung-Han;Lee, Gang-Seob;Lee, Jung-Sook;Hahn, Jang-Ho;Kim, Chang-Kug;Kikuch, Shoshi;Satoh, Kouji;Kim, Jin-A;Lee, Jeong-Hwa;Lee, Tae-Ho;Kim, Yong-Hwan
    • Journal of Plant Biotechnology
    • /
    • v.36 no.2
    • /
    • pp.130-136
    • /
    • 2009
  • Rice (Oryza sativa) is the most important staple crop in Korea. With its small genome size of 389Mb, rice is a model plant for genome research. We analyzed expressed sequence tag (EST) clones from immature seeds of rice (cv. Ilpum) at 20 days after heading. The 25,668 EST clones were clustered by using SeqMan program and 7,509 clones were selected as unique clones. We compared the 7,509 unique genes with KOME database including the 32,127 FL-cDNA in rice. Finally, 4,990 clones were homologous and 2,519 clones non-homologous to FL-cDNA clones. In addition, we mapped the 7,509 cDNA clones by using TIGR rice pseudomolecule version 5. Ultimately, 7,347 clones were matched to be significant clones related to the TIGR rice pseudomolecules, but 162 clones were unmapped. For the clustering of orthologous group genes, we further analyzed the 7,509 EST clones from immature seeds using NCBI clusters of orthologous groups database. Among the clones, 4,968 clones were categorized into information storage and processing, cellular processes and signaling, metabolism and poorly characterized genes, proportioning 799 (14.89%), 1,536 (28.3%), 1,148 (21.2%) and 1,936 (35.7%) clones to the previous four categories, respectively.

Correlation of Antioxidant and Antimutagenic Activity with Content of Pigments and Phenolic Compounds of Colored Rice Seeds (유색미 색소체 및 페놀성화합물 함량과 항산화.항변이원성 간의 상관관계)

  • Kang, Mi-Young;Shin, Soo-Young;Nam, Seok-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.968-974
    • /
    • 2003
  • Twenty-three cultivars of colored rice were collected from inside and outside Korea to determine the contents of pigments and phenolic compounds, and also to compare their correlations with antioxidativity and antimutagenicity. The pigment content decreased in the order of LK 1-3-6-12-1-1>LK 1D 2-7-12-1-1>Elwee>Mutumanikam>IR 1544-38-2-2-1-2-2>wx 124-163-45-7-1-1-1, LK 1A-2-12-1-1. Polyphenolic content was the greatest in IR 17491-5-4-3-3 with a ratio of 0.244 g per 100 g brown rice, followed by LK 1-3-6-12-1-1>LK 1D2-12-1>Elwee>Mutumanikam 7 IR 1544-38-2-2-1-2-2, LK 1A-2-12-1-1. The pigment contents for each colored rice cultivar showed a highly positive correlation with polyphenolics in colored rice seeds. For chromaticity, a positive correlation was exhibited between the lightness and hydroxyl radical scavenging activity. In contrast, a negative correlation was observed between the redness and the inhibitory effect of lipid peroxidation.

Experimental Studies for Analyzing Direct Contamination Pathway $^{54}Mn,\;^{57}Co,\;^{85}Sr,\;^{103}Ru$ and $^{134}Cs$ in Rice (벼에 대한 $^{54}Mn,\;^{57}Co,\;^{85}Sr,\;^{103}Ru,\;^{134}Cs$의 직접오염 경로분석 실험)

  • Choi, Yong-Ho;Lim, Kwang-Muk;Park, Hyo-Guk;Lee, Won-Yun;Lee, Chang-Mi
    • Journal of Radiation Protection and Research
    • /
    • v.25 no.1
    • /
    • pp.21-30
    • /
    • 2000
  • For analyzing the direct contamination pathway of radionudides in rice plants, a Solution containing $^{54}Mn,\;^{57}Co,\;^{85}Sr,\;^{103}Ru$ and $^{134}Cs$ was applied to the aboveground Parts of the between RI application and harvest. Its highest observed value was 0.94. The fractions of the initial plant deposition that remained in rice plants at harvest were in the range of $19{\sim}47%,\;17{\sim}43%,\;19{\sim}42%,\;23{\sim}61%$ and $11{\sim}69%$ for $^{54}Mn,\;^{57}Co,\;^{85}Sr,\;^{103}Ru$ and $^{134}Cs$, respectively, when no decay was assumed. The translocation factors of those radionuclides in hulled seeds were in the range of $6.9{\times}10^{-4}3.8{\times}10^{-2},\;3.6{\times}10^{-3}{\sim}1.6{\times}10^{-1},\;5.8{\times}10^{-4}{\sim}3.2{\sim}10^{-2},\;1.6{\times}10^{-4}{\sim}7.6{\times}10^{-3}$ and $3.2{\times}10^{-2}{\sim}2.0{\times}10^{-1}$, respertively, and were highest when they were applied at the stage of active seed development. It was indicated that the remaining percentage and translocation factor would not be greatly affected by the difference in the rain frequency if it is within a factor of 2. These results can be utilzed for predicting the radionuclide concentrations in rice seeds when an accidental deposition of those radionuclides occurs during the rice-growing season.

  • PDF

Construction of Gene-Specific Primers for Various Antioxidant Isoenzyme Genes and Their Expressions in Rice (Oryza sativa L.) Seedlings Obtained from Gamma-irradiated Seeds

  • Kim, Jin-Hon;Chung, Byung-Yeoup;Kim, Jae-Sung;Wi, Seung-Gon;Yang, Dae-Hwa;Lee, Choon-Hwan;Lee, Myung-Chul
    • Journal of Photoscience
    • /
    • v.11 no.3
    • /
    • pp.115-120
    • /
    • 2004
  • For the expression study of antioxidant isoenzyme genes in rice (Oryza sativa L.) plants, extensive searches for genes of superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT) isoforms were performed through the GenBank database. The genes for two cytosolic and one plastidic CuZn-SOD, one Fe-SOD, two Mn-SOD, two cytosolic and two chloroplastic (stromal and thylakoid) APX, and three CAT isoforms were available in japonica-type rice. These isoforms were named as cCuZn-SOD1, cCuZn-SOD2, pCuZn-SOD, Fe-SOD, Mn-SOD1, Mn-SOD2, cAPXa, cAPXb, Chl_sAPX, Chl_tAPX, CATa, CATb, and CATc, respectively. Since they shared a high degree of homology in the nucleotide and amino acid sequences, the gene-specific primers for the genes were designed directly from their full-length cDNAs found in the database except for the CATa gene. These primers were used in the RT-PCR analysis to investigate the differential expression of antioxidant isoenzyme genes in rice plants from the seeds irradiated with low doses (2, 4, 8, and 16 Gy) of gamma-radiation. The gammairradiation slightly increased the transcripts of pCuZn-SOD, while those of Fe-SOD, cAPXb, and CATb decreased. However, no substantial differences were observed in the expression of all the isoenzyme genes between the control and irradiated groups. In this study, gene specific primers for thirteen SOD, APX and CAT isoenzymes were constructed from the full-length cDNAs. The results of RT-PCR analysis obtained by using these primers suggests that the expression levels of SOD, APX, and CAT isoenzyme genes in rice seedlings were hardly affected by gamma-irradiation at the seed stage.

  • PDF

Increasing Root-mat Formation by Plant Growth Regulators in Machine Transplanting with Infant Seedling of Rice (생장조절제를 이용한 벼 기계이앙 어린모 맷트형성 촉진)

  • Kim, Je-Kyu;Kim, Young-Hyo;Lee, Moon-Hee;Park, Rae-Kyeong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.1
    • /
    • pp.57-64
    • /
    • 1991
  • This experiment was conducted to elucidate the effect of plant growth regulators (PGR) on the root -mat formation of infant seedling (8- to 10-day-old seedling) of rice in machine transplanting. The rice seeds of Odaebyeo were socked in water with different concentrations of PGRs for 48 hours at room temperature. Seeding rate was 220 g per seed tray (30x60x3cm). Metalaxyl (25% wettable powder) was used for a fungicide. Generally, the metalaxyl-treated seeds markedly promoted the root growth of the rice seedling, while tetracy-cle, pachlobutrazol and NTN -821 reduced the seedling height and root length, and thickened the shoot diameter at higher concentation levels. Tetracycle decreased root length of the rice seedlings but increased root number per seedling, and root-mat formation was poor. Whereas, metalaxyl concentrations of 200 and 1,000 ppm markedly increased root length and number of root hairs without decreasing root number, thus root-mat formation was excellent. The optimum concentration of metalaxyl seed treatment to increase the root-mat formation of infant seedling of rice was about 200 ppm. Metalaxyl seed treatment could be advanced one to two days of the duration of root-mat formation compared with control.

  • PDF