• Title/Summary/Keyword: Rice metallothionein

Search Result 5, Processing Time 0.02 seconds

OsWRKY42 Represses OsMT1d and Induces Reactive Oxygen Species and Leaf Senescence in Rice

  • Han, Muho;Kim, Chi-Yeol;Lee, Junok;Lee, Sang-Kyu;Jeon, Jong-Seong
    • Molecules and Cells
    • /
    • v.37 no.7
    • /
    • pp.532-539
    • /
    • 2014
  • We isolated a rice (Oryza sativa L.) WRKY gene which is highly upregulated in senescent leaves, denoted OsWRKY42. Analysis of OsWRKY42-GFP expression and its effects on transcriptional activation in maize protoplasts suggested that the OsWRKY42 protein functions as a nuclear transcriptional repressor. OsWRKY42-overexpressing (OsWR KY42OX) transgenic rice plants exhibited an early leaf senescence phenotype with accumulation of the reactive oxygen species (ROS) hydrogen peroxide and a reduced chlorophyll content. Expression analysis of ROS producing and scavenging genes revealed that the metallothionein genes clustered on chromosome 12, especially OsMT1d, were strongly repressed in OsWRKY42OX plants. An OsMT1d promoter:LUC construct was found to be repressed by OsWRKY42 overexpression in rice protoplasts. Finally, chromatin immunoprecipitation analysis demonstrated that OsWRKY42 binds to the W-box of the OsMT1d promoter. Our results thus suggest that OsWRKY42 represses OsMT1d-mediated ROS scavenging and thereby promotes leaf senescence in rice.

Molecular Analyses of the Metallothionein Gene Family in Rice (Oryza sativa L.)

  • Zhou, Gongke;Xu, Yufeng;Li, Ji;Yang, Lingyan;Liu, Jin-Yuan
    • BMB Reports
    • /
    • v.39 no.5
    • /
    • pp.595-606
    • /
    • 2006
  • Metallothioneins are a group of low molecular mass and cysteine-rich metal-binding proteins, ubiquitously found in most living organisms. They play an important role in maintaining intracellular metal homeostasis, eliminating metal toxification and protecting against intracellular oxidative damages. Analysis of complete rice genome sequences revealed eleven genes encoding putative metallothionein (OsMT), indicating that OsMTs constitute a small gene family in rice. Expression profiling revealed that each member of the OsMT gene family differs not only in sequence but also in their tissue expression patterns, suggesting that these isoforms may have different functions they perform in specific tissues. On the basis of OsMT structural and phylogenetic analysis, the OsMT family was classified as two classes and class I was subdivided into four types. Additionally, in this paper we also present a complete overview of this family, describing the gene structure, genome localization, upstream regulatory element, and exon/intron organization of each member in order to provide valuable insight into this OsMT gene family.

Toxicometallomics of Cadmium, Manganese and Arsenic with Special Reference to the Roles of Metal Transporters

  • Himeno, Seiichiro;Sumi, Daigo;Fujishiro, Hitomi
    • Toxicological Research
    • /
    • v.35 no.4
    • /
    • pp.311-317
    • /
    • 2019
  • The transport systems for metals play crucial roles in both the physiological functions of essential metals and the toxic effects of hazardous metals in mammals and plants. In mammalian cells, Zn transporters such as ZIP8 and ZIP14 have been found to function as the transporters for Mn(II) and Cd(II), contributing to the maintenance of Mn homeostasis and metallothionein-independent transports of Cd, respectively. In rice, the Mn transporter OsNramp5 expressed in the root is used for the uptake of Cd from the soil. Japan began to cultivate OsNramp5 mutant rice, which was found to accumulate little Cd, to prevent Cd accumulation. Inorganic trivalent arsenic (As(III)) is absorbed into mammalian cells via aquaglyceroporin, a water and glycerol channel. The ortholog of aquaporin in rice, OsLsi1, was found to be an Si transporter expressed in rice root, and is responsible for the absorption of soil As(III) into the root. Since rice is a hyperaccumulator of Si, higher amounts of As(III) are incorporated into rice compared to other plants. Thus, the transporters of essential metals are also utilized to incorporate toxic metals in both mammals and plants, and understanding the mechanisms of metal transports is important for the development of mitigation strategies against food contamination.

Effect of Dietary Fibers in Rice and Barley on Lipid and Cadmium Metabolism in the Rat (쌀과 보리의 식이 섬유가 흰쥐의 지방 및 Cadmium 대사에 미치는 영향)

  • 김미경
    • Journal of Nutrition and Health
    • /
    • v.30 no.3
    • /
    • pp.252-265
    • /
    • 1997
  • This study was performed to investigate effect of dietary fibers in rice and barley on glucose, lipid and cadmium (Cd) metabolism in the rat. Fifty-six male Spague-Dawley rats weighing 244.6$\pm$2.7g were blocked into eight groups according to body weight and raised for four weeks with diets containing 0 or 0.04%(w/w) CdCl2 and four different carbohydrate sources, starch, rice flour, barley flour and mixture of rice and barley flour(7 : 3, w/w). Total dietary fibers and $\beta$-glucan contents of barley were about three times higher than those of rice (10.75% vs. 3.94%, 3.11% vs. 1.06%, respectively). Food intake, weight gain, food efficiency ratio, liver and kidney weights were lower in Cd exposed groups, and barley group among Cd exposed animals showed highest weight gain, food efficiency ratio and organ weights. Fasting serum glucose levels were not significantly different among groups, Serum cholesterol level was lowest in Cd exposed barley group. Serum HDL-cholesterol level was higher in none-Cd exposed starch and barley groups, and HDL-cholesterol : total cholesterol ratios were higher in none-Cd rice and mixed flour groups than other groups. Liver total lipid and triglyceride levels were lowest in barley groups regardless of Cd administration. Fecal total lipid, cholesterol and triglyceride excretions were high in barley and mixed flour groups. Liver Cd concentrations were low in Cd exposed barley and mixed flour groups. In Cd exposed barley group, fecal weight and Cd excretion were highest and Cd retention ratio was lowest among groups. Small intestine metallothionein(MT) concentration was highest in Cd exposed rice group, and kidney MT concentration was highest in Cd exposed barley group. In conclusion, cereals showed different effects on lipid and Cd metabolism that might be mediated by dietary fibers in cereals. Especially $\beta$-glucan-rich barley group showed greatest lipid and Cd lowering effects by increasing fecal lipids and Cd excretions.

  • PDF

Genes of Wild Rice (Oryza grandiglumis) Induced by Wounding and Yeast Extract (상처와 효모추출물 처리조건에서 유발되는 야생벼 유전자 스크린)

  • Shin, Sang-Hyun;Im, Hyun-Hee;Lee, Jai-Heon;Kim, Doh-Hoon;Chung, Won-Bok;Kang, Kyung-Ho;Cho, Sung-Ki;Shin, Jeong-Sheop;Chung, Young-Soo
    • Journal of Life Science
    • /
    • v.14 no.4
    • /
    • pp.650-656
    • /
    • 2004
  • Oryza grandiglumis (CCDD, 2n=48), one of the wild rice species, has been known to possess fungal-,bacterial-, and insect-resistance against sheath blight, rice blast, bacterial leaf blight and brown plant hopper (Nilaparvata lugens). To rapidly isolate differentially expressed genes responding to fungal and wounding stress, wounding and yeast extract were treated to O. grandiglumis for 24 hrs. Suppression subtractive hybridization (SSH) method was used to obtain differentially expressed genes from yeast extract and wounding treated plants. Seven hundreds and seventy six clones were obtained by subcloning PCR product, and colony array and screening were carried out using radio-isotope labeled cDNA probes prepared from the wounding and yeast extract treated plants. One hundred and fifteen colonies were confirmed as true positive ones. Average insert size of the clones were ranged from 400 bp to 700 bp and all the inserts were sequenced. To decide the identity of those clones, sequences were analyzed by sequence homology via GenBank database. The homology search result showed that 68 clones were matched to the genes with known function; 16 were related to primary metabolism, 5 to plant retrotransposons, 5 to defense related metallothionein-like genes. In addition to that, others were matched to various genes with known function in amino acid synthesis and processing, membrane transport, and signal transduction, so on. In northern blot analysis, induced expressions of ogwfi-161, ogwfi-646, ogwfi-663, and ogwfi-695 by wounding and yeast extract treatments were confirmed. The result indicates that SSH method is very efficient for rapid screening of differentially expressed genes.