• 제목/요약/키워드: Rice breeding

Search Result 704, Processing Time 0.043 seconds

Leveraging Rice Genetic Diversity: Connecting the Genebank to Mainstream Breeding

  • J. Damien Platten
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.31-31
    • /
    • 2022
  • Rice contains a wealth of genetic diversity, both within Oryza sativa and in related A-genome species. Decades of genetic research into this diversity have identified dozens of major genes contributing to a wide variety of important traits, including disease resistance, abiotic stress tolerance (drought, salinity, submergence, heat, cold etc.), grain quality, flowering date and maturity and plant architecture. Yet despite these opportunities, very few of the major genes and QTLs known have been successfully applied through rice breeding programs to produce sustained changes in farmer's fields. This presentation will briefly examine some of the factors limiting application of major genes in the mainstream breeding programs, and steps that have been taken to alleviate those limitations. As a result of these interventions, dozens of major genes that were previously unavailable to breeders are now being used confidently in the variety development process. Case studies will be discussed of genes critical for blast resistance worldwide, rice yellow mottle virus for Africa, and new validated QTLs for salinity tolerance.

  • PDF

Changes of physiochemical properties of LOX-3 null rice lines stored at different storage temperatures and periods

  • Shin, Woon-Chul;Kim, Jeong-Ju;Park, Hyun-Su;Jeong, Jong-Min;Baek, Man-Kee;Nam, Jeong-Kwon;Park, Seul-Gi;Kim, Choon-Song;Cho, Young-Chan;Kim, Bo-Kyeong
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.69-69
    • /
    • 2017
  • Due to the lack in storage facility, considerable amount of rice is stocked in the open air, which causes increased stale flavor and deteriorates palatability and merchantable quality. Lipoxygenase-3(LOX-3) is involved in the production of volatile constituents in stored rice, and the development of stale flavor is delayed in LOX-3 null rice. LOX activity in the rice grain is localized in bran fraction and the tropical Japonica cultivar 'Dawdam' was reported that the absence of LOX-3 is inherited as a simple recessive trait. Also, it was reported that the peroxidation of unsaturated fatty acids occurs at lower levels in the 'Dawdam' bran fraction during storage than in rice varieties with LOX-3. This study was conducted to develop LOX-3 null rice lines using 'Dawdam' and investigate changes of physicochemical properties of the lines stored at different storage temperatures and periods. So we analyzed texture, toyo glossiness value, germination rate and lipoxygenase activity of 15 LOX-3 null rice lines on the condition of which rough rice had been stored at different temperatures (high temperature condition at $35^{\circ}C$ and low temperature condition at $15^{\circ}C$ for 4months. Hardness and stickiness of the lines tendered to be increased when it was stored at high temperature and adhesiveness, springiness, cohesiveness and chewiness was not considerably different according to storage temperatures and periods. The germination rate of HR29062-B-98-2-1-B among LOX-3 null rice lines was higher than another lines, 99.3, 94.0% after 4months stored at low temperature and high temperature, respectively. The lipoxygenase activity was 3,304, 1,601unit/mg protein after 4months stored at low temperature and high temperatures, respectively. So, it is thought that this line will be useful to breed rice varieties with high storability after tested on agricultural traits.

  • PDF

Development of the breeding materials with diverse grain size and shape in japonica rice

  • Park, Hyun-Su;Shin, Woon-Chul;Baek, Man-Kee;Nam, Jeong-Kwon;Jeong, Jong-Min;Park, Seul-Gi;Kim, Choon-Song;Cho, Young-Chan;Kim, Bo-Kyeong
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.67-67
    • /
    • 2017
  • We developed the breeding materials with diverse grain size and shape in japonica rice. Grain size and shape are important factors affecting consumer preference and choice. However, most of Korean japonica rice cultivars have small, short, and round grain. To diversify the grain size and shape of japonica rice, we conducted the breeding program using donor parents, Jizi1560 and Jizi1581. Jizi1560 and Jizi1581 are japonica germplasm with extremely large grain. Four crosses between the each donor parents and high yielding japonica rice cultivars, Deuraechan and Boramchan, were constructed and then anther culture method was applied. We obtained 290 doubled-haploid (DH) lines with appropriated morphological traits and selected 91 DH lines with diverse grain size and shape. The grain related-traits of the selected DH lines showed a higher diversity when compared with 319 cultivars developed by NICS (264 japonica, 13 black, and 32 Tongil type cultivars). We designated the selected DH lines, four parents, and Daeripbyeo 1, large grain japonica cultivar, as the breeding materials for further analysis. The breeding materials were classified into five groups, A to E, based on the grain-related traits. Group A (including Jizi1581) and Group B (including Daeripbyeo 1) showed similar grain width, whereas Group A exhibited longer grain length and heavier grain weight. Group C (including Deuraechan and Boramchan) showed shorter and rounder grain shape and smaller grain size than any other groups. Group D including solely Jizi1560 had extremely large grain, such as the longest grain length, width, and thickness and heaviest grain weight. Group E including only two DH lines had long and slender grain shape, so that showed the highest ratio of length to width. The grain size and shape of the breeding materials exhibited beyond the characteristics of previously developed Korean japonica cultivars. The breeding materials will be applied in the breeding programs to diversify the grain size and shape of japonica rice.

  • PDF

Breeding of Early Heading Date with High Yield Using CRISPR/Cas9 in Rice

  • Eun-Gyeong Kim;Jae-Ryoung Park;Yoon-Hee Jang;Kyung-Min Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.285-285
    • /
    • 2022
  • Recent unpredictable climate change is a major cause of rice yield loss. In particular, methane is a key factor in global warming. Therefore rice breeders are trying to breed the reducing-methane gas emission rice using the crossbreeding method. However, the traditional crossbreeding method takes 8 to 10 years to breed a cultivar, and the anther culture method developed to shorten the breeding cycle also takes 6 to 7 years. On the other hand, CRISPR/Cas9 accurately edits the target trait and can rapidly breed rice cultivars by editing the target trait as a homozygous in 2-3 years. In addition, exogenous genetic elements such as Cas9 can be isolated from the G1 generation. Therefore, the flowering time was regulated by applying CRISPR/Cas9 technology, and OsCKq1 genome-editing (OsCKq1-G) rice with early flowered and high yield was bred in the field. Genome-editing of OsCKq1 applied CRISPR/Cas9 technology up-regulates the expression of the flowering promotion gene Ehd1 under long-day conditions induces early flowering and increases the yield by increasing the 1,000-grain weight. And as the generations advanced, each agricultural trait indicated a low coefficient of variation. As a result, indicated that OsCKq1 plays an important role in regulating the flowering time and is related to the trait determining yield. Therefore, OsCKq1-G can suggest a breeding strategy for the Net-Zero national policy for reducing-methane gas emission rice by shortening the breeding cycle with the early flowered, and high-yield rice. CRISPR/Cas9 technology is a rapid and accurate breeding technology for breeding rice cultivars with important characteristics.

  • PDF

Identification of Quantitative Trait Loci for Fatty Acid Content in Brown Rice (Oryza sativa L.)

  • Jang, Su;Chin, Joong Hyoun
    • Plant Breeding and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.444-453
    • /
    • 2018
  • The rice bran oil contained in brown rice is composed of highly valued ingredient. Improving the content of unsaturated fatty acids in rice seed, such as oleic acid, linoleic acid, and ${\alpha}$-linolenic acid, would provide more benefit to human health. Fatty acid content is quantitative trait controlled by multiple genes. We have utilized high-density SNP data from highly advanced breeding populations to identify QTLs for fatty acid contents in brown rice. Here, we identified 51 major QTLs (M-QTLs) and 25 epistatic QTLs (EpQTLs) related to eleven fatty acid contents. Eight and four M-QTLs were pleiotropically associated with the content of different fatty acids in MT-RILs and DT-RILs, respectively. Total effect of M-QTLs for palmitic acid (16:0), oleic acid (18:1), and linoleic acid (18:2), could explain phenotypic variations of 36.7%, 63.7%, and 41% in MT-RILs, respectively. Alpha-linolenic acid which is important for a human's health could be explained phenotypic variation of 15.7% by six M-QTLs. These QTLs identified in this study can be used to improve nutritious content in rice breeding programs.

Potential Benefit of Genetic Engineering in Plant Breeding: Rice, a Case Study

  • Datta, Swapan K.
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.4
    • /
    • pp.197-206
    • /
    • 2000
  • This paper summarizes recent developments in the field of molecular biology and its application to plant breeding, particularly in rice. Plant breeding in the past mostly depended on the time-consuming crossing of known genomes limited to certain traits. Plant breeding has now benefited from marker-assisted selection and genetic engineering to widen the gene pool, improve plant protection, and increase yield. Future plant breeding will expand based on functional and nutritional genomics, in which gene discovery and high-throughput transformation will accelerate crop design and benefits will accrue to human health, in the form of nutritional food for poor people to reduce malnutrition, or food enriched with antioxidants and with high food value for rich people. Agricultural biotechnology for food is no longer a dream but a reality that will dominate the 21st century for agriculture and human welfare.

  • PDF

Breeding Hybrid Rice with Genes Resistant to Diseases and Insects Using Marker-Assisted Selection and Evaluation of Biological Assay

  • Kim, Me-Sun;Ouk, Sothea;Jung, Kuk-Hyun;Song, Yoohan;Le, Van Trang;Yang, Ju-Young;Cho, Yong-Gu
    • Plant Breeding and Biotechnology
    • /
    • v.7 no.3
    • /
    • pp.272-286
    • /
    • 2019
  • Developing elite hybrid rice varieties is one important objective of rice breeding programs. Several genes related to male sterilities, restores, and pollinators have been identified through map-based gene cloning within natural variations of rice. These identified genes are good targets for introducing genetic traits in molecular breeding. This study was conducted to breed elite hybrid lines with major genes related to hybrid traits and disease/insect resistance in 240 genetic resources and F1 hybrid combinations of rice. Molecular markers were reset for three major hybrid genes (S5, Rf3, Rf4) and thirteen disease/insect resistant genes (rice bacterial blight resistance genes Xa3, Xa4, xa5, Xa7, xa13, Xa21; blast resistance genes Pita, Pib, Pi5, Pii; brown planthopper resistant genes Bph18(t) and tungro virus resistance gene tsv1). Genotypes were then analyzed using molecular marker-assisted selection (MAS). Biological assay was then performed at the Red River Delta region in Vietnam using eleven F1 hybrid combinations and two control vatieties. Results showed that nine F1 hybrid combinations were highly resistant to rice bacterial blight and blast. Finally, eight F1 hybrid rice varieties with resistance to disease/insect were selected from eleven F1 hybrid combinations. Their characteristics such as agricultural traits and yields were then investigated. These F1 hybrid rice varieties developed with major genes related to hybrid traits and disease/insect resistant genes could be useful for hybrid breeding programs to achieve high yield with biotic and abiotic resistance.

CRISPR/Cas9 is New Breeding Strategy for Improving Agronomic Characteristics of Rice Response to Climate Change

  • Jae-Ryoung Park;Eun-Gyeong Kim;Yoon-Hee Jang;Kyung-Min Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.288-288
    • /
    • 2022
  • Rice is an important staple in the world. And drought is one of the important constraints that negatively affect yield loss and grain quality of rice. CRISPR/Cas9 is a new breeding strategy that can improve the characteristics of rice quickly and accurately. CRISPR/Cas9 is a novel approach that can reliably harvest rice yields in response to a rapidly changing climate. In addition, there is no externally inserted DNA left in genome-editing rice, and it is receiving attention as being able to take responsibility for future food because its characteristics are continuously improved. In the future, high levels of drought resistant in water-constrained environments will be required, which will reduce yield loss. OsSAP was genome-editing with CRISPR/Cas9 in rice. A different line number was assigned to each panicle, and the generation advanced by applying the ear-to-row method. Genome-editing rice has improved drought resistance in drought conditions. Also, in genome-editing rice, the target sequence was homozygous in the 0 generation, and the coefficient of variation of heading date, number of tiller, and 1,000-grain weight was very small in 2 generation. In the era of rapidly changing climate change, CRISPR/Cas9 presents a new breeding strategy that can rapidly and accurately improve agronomic traits of major food crops as well as rice. CRISPR/Cas9 is applied together with traditional breeding to develop into a new breeding strategy, it is suggested that food can be obtained stably in response to climate change.

  • PDF