• Title/Summary/Keyword: Rice Share Farming

Search Result 7, Processing Time 0.019 seconds

MECHAINSED RICE SHARE FARMING IN PERMATANG PAUH SEBERANG PERAI,MALAYSIA-A MANAGEMENT EXPERIENCE

  • Hussain, M.D
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.538-545
    • /
    • 1993
  • Individual farming involving small land parcel (0.5 to 1.0ha) is declining because it is uneconomic and unable to incorporate modern technological innovation to improve its production efficiency. A centrally managed medium scale mechanised rice share farming was implemented at Permatang Pauh, Sebeerang Perai, Malaysia in 1988-1991 for eight seasons on a contiguous 57 ha rice land rented from 100 owners. Ten participants were chosen to participate in this project which perpetuated from revolving fund of MR 165.000. The objective of the project was to overcome problem of production efficiency and to provide a stable income to farmers operating on a medium and full time basis. Mechanisation was given prime emphasis to optime and reduce labour requirement and meeting the targeted crop scheduling. Direct seeding and mechanical transplanting methods of crop establishment were adopted. Land preparations, crop establishment and crop care were done using machineries purchased by the group. Selected participants were trained to operate machineries which composed 2 and 4 wheel tractors, mechanical transplanters, motorised seeders and sprayers. Harvesting and transportation of rice to the mills were done on contractual basis using combine harvesters and bulk handling via 3-4 ton lorries respectively. The net clean yield (less 10-20 percent deduction at rice mills) obtained in such project has contributed to stabilise the production and income of participating farmers.

  • PDF

An Analysis of Contribution Rates of Irrigation Water and Investment for Farmland Base Development Project to Rice Production (농업용수(農業用水)와 농업생산기반조성사업투자(農業生産基盤造成事業投資)의 미곡생산기여도(米穀生産寄與度) 분석(分析))

  • Lim, Jae-Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.31 no.2
    • /
    • pp.135-148
    • /
    • 2004
  • Rice is not only main food but also key farm income source of Korean farmers. In spite of the above facts, rice productivity was decreased on account of drought in every 2 or 3 years interval owing to the vulnerability of irrigation facilities throughout Korea in the past decades. As an context of the first five year economic development plan, all weather farming programme including 4 big river basin comprehensive development projects and large and medium sized irrigation water development projects were carried out successfully. Therefore the area of irrigated paddy were increased from 58% in 1970 to 76.2% in 1999. In the past decades, the Government had invested heavy financial funds to develop irrigation water but as an factor share analysis, the contribution rates of irrigation water and investment for farmland base development project have not been identified yet in national agricultural economic level. It is very scarce to find out the papers concerned to macro-economic factor share analysis or contribution rates of water and investment cost to rice production value in Korea considering the production function of the quantity of irrigation water and investment cost as independent variables. Accordingly this paper covered and aimed at identifying (1) derivation of rice production function with the time serial data from 1965 to 1999 and the contribution rates of irrigation water and total investment cost for farmland base development project. The analytical model of the contribution rates was adapted the famous Cobb-Douglass production function. According to the model analysis, the contribution rate of irrigation water to rice production in Korea was shown 37.8% which was equivalent to 0.28 of the production elasticity of water. The contribution rate of farmland base development project cost was revealed 22% and direct production cost of rice was contributed 60% in the growth of rice production and farm mechanization costs contributed to 18% of it respectively. The two contribution rates comparing with the direct production cost were small but without irrigation water and farmland base development, application of high-pay off inputs and farm mechanization might be impossible. Considering the food security and to cope with the frequent drought, rice farming and investment for the irrigation water development should be continued even in WTO system.

  • PDF

A Study on the Regionality of Land-Lease Farming : A Comparative Analysis of the Case Study Areas (임차농(賃借農)의 지역성(地域性)에 관한 연구 -사례지역의 비교분석-)

  • Suh, Chan-Ki
    • Journal of the Korean association of regional geographers
    • /
    • v.3 no.2
    • /
    • pp.121-150
    • /
    • 1997
  • This Study puts the purpose to explicate the regionalities of land-lease farming by a comparative analisis of the five case study areas in Kungpook Province as the agricultural space system of Teagu metropolitan city. For the regional comparative analysis the province was divided into the three zones with the distance from the central city(Teagu): urban fringes, intermediate and remote zone, and then subdivided into the five regions by farming systems : horticulture, rice-farming, and dry-field farming. The data were collected from 77 land-leasing farmers by questionnaire and interview with farm managers in 5 sample villages representing the regionalities of the above five regions respectively. In spite of relatively restricted scope of the research areas, the analytical results appear remarkable regional differences in the characteristics of land-lease farming within a single agricultural space system. In the final analysis the regionalities of the five land-lease farming regions could be described respectively as follows. (1) Koryong-Gun in the inner urban fringe zone : The developing land-lease farming region of commercialized suburban horticulture with medium scale. (2) Songju-Gun in the outer urban fringe zone : The developing land-lease farming region of highly commercialized horticulture with large scale. (3) Uisong-Gun in the intermediate zone : The stagnated land-lease farming region of commercialized rice-farming with large scale. (4) Yongil-Gun in the intermediate zone : The stagnated land-lease farming region of commercializing dry-field farming with medium scale. (5) Ponghwa-Gun in the remote zone : The stagnated and delayed region in commercializing of intermountain dry-field land-lease farming with small scale. These varied regionalities resulted from the diverse spatiality as a complex of spatial orders and localities. The spatial orders in this study are frequently recognizable as a form of distance-decay, and the locality of a region is determined mostly by the its peculiarity of physical and population conditions. In the comparative analysis of the regionalities the degree of commercialization of a region is a most comprehensive and useful frame of reference because it reflects the degree of development of capitalist land-lease farming. Finally these apparent regional differentiations of land-lease farming within a agricultural space system raise the problem of impracticality of the existing uniform logic on the land-lease farming such as "large scale farms share larger part of leased farmland." This problem suggests the urgent need of reappraisal of many aspatial logics and theories on the land-lease farming.

  • PDF

Features and Socio-Economic Background of Farmland Consolidation Project during the 1930s and 1940s in Korea (1930~40년대 경지정리사업의 특징과 사회⋅경제적 배경)

  • Kim, Jin-Soo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.2
    • /
    • pp.85-96
    • /
    • 2022
  • The study is aimed to investigate the features and socio-economic background of farmland consolidation project with medium-sized paddy plot at irrigation associations during the Japanese colonial period in Korea. Most of farmland consolidation works in the 1940s was composed of independent irrigation and drainage ditches along the short side of field plot. However, the number of farm roads at farmland consolidation zone was much smaller than number of irrigation ditches to decrease reduction in farmland area. The standard field plot was medium-sized (about 20-40 ares) in Korea but small-sized (about 10 ares) in Japan in this period. As the result of farmland consolidation works, the unit water requirement was increased to 0.0035 m3/s/ha, and the unit area drainage discharge was over 2.0 m3/s/km2 in many cases. The farmland consolidation with medium-sized plot have been spread under the colonial landlord system, where major landlords occupied a large share of farmland and managed corporate farming to gain more benefit. The reasons for spread of farmland consolidation with medium-sized plot may be as follows: high net profit ratio, an increase in land price, and labor savings in rice farming. The farmland consolidation with medium-sized plot in the colonial period showed intermediate features between the farm consolidation with small-sized plot for an increase in land productivity in Japan and the farm consolidation with medium-sized plot for an increase in labor productivity after the 1960s.

Global Rice Production, Consumption and Trade: Trends and Future Directions

  • Bhandari, Humnath
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2019.09a
    • /
    • pp.5-5
    • /
    • 2019
  • The objectives of this paper are (i) to analyze past trends and future directions of rice production, consumption and trade across the world and (ii) to discuss emerging challenges and future directions in the global rice industry. Rice is a staple food of over half of the world's 7.7 billion people. It is an important economic, social, political, and cultural commodity in most Asian countries. Rice is the $1^{st}$ most widely consumed, $2^{nd}$ largely produced, and $3^{rd}$ most widely grown food crop in the world. It was cultivated by 144 million farms in over 100 countries with harvested area of over 163 million ha producing about 745 million tons paddy in 2018. About 90% of the total rice is produced in Asia. China and India, the biggest rice producers, account for over half of the world's rice production. Between 1960 and 2018, world rice production increased over threefold from 221 to 745 million tons (2.1% per year) due to area expansion from 120 to 163 million ha (0.5% per year) and paddy yield increase from 1.8 to 4.6 t/ha (1.6% per year). The Green Revolution led massive increase in rice production prevented famines, provided food for millions of people, reduced poverty and hunger, and improved livelihoods of millions of Asians. The future increase in rice production must come from yield increase as the scope for area expansion is limited. Rice is the most widely consumed food crop. The world's average per capita milled rice consumption is 64 kilograms providing 19% of daily calories. Asia accounted for 84% of global consumption followed by Africa (7%), South America (3%), and the Middle East (2%). Asia's per capita rice consumption is 100 kilograms per year providing 28% of daily calories. The global and Asian per capita consumption increased from the 1960s to the 1990s but stable afterward. The per capita rice consumption is expected to decline in Asia but increase outside Asia especially in Africa in the future. The total milled rice consumption was about 490 million tons in 2018 and projected to reach 550 million tons by 2030 and 590 million tons by 2040. Rice is thinly traded in international market because it is a highly protected commodity. Only about 9% of the total production is traded in global rice market. However, the volume of global rice trade has increased over six-fold from 7.5 to 46.5 million tons between the 1960s and 2018. A relatively small number of exporting countries interact with a large number of importing countries. The top five rice exporting countries are India, Thailand, Vietnam, Pakistan, and China accounting for 74% of the global rice export. The top five rice importing countries are China, Philippines, Nigeria, European Union and Saudi Arabia accounting for 26% of the global rice import. Within rice varieties, Japonica rice accounts for the highest share of the global rice trade (about 12%) followed by Basmati rice (about 10%). The high concentration of exports to a few countries makes international rice market vulnerable to supply disruptions in exporting countries, leading to higher world prices of rice. The export price of Thai 5% broken rice increased from 198 US$/ton in 2000 to 421 US$/ton in 2018. The volumes of trade and rice prices in the global market are expected to increase in the future. The major future challenges of the rice industry are increasing demand due to population growth, rising demand in Africa, economic growth and diet diversification, competition for natural resources (land and water), labor scarcity, climate change and natural hazards, poverty and inequality, hunger and malnutrition, urbanization, low income in rice farming, yield saturation, aging of farmers, feminization of agriculture, health and environmental concerns, improving value chains, and shifting donor priorities away from agriculture. At the same time, new opportunities are available due to access to new technologies, increased investment by the private sector, and increased global partnership. More investment in rice research and development is needed to develop and disseminate innovative technologies and practices to overcome problems and ensure food and nutrition security of the future population.

  • PDF

Current situation and future prospects for beef production in Thailand - A review

  • Bunmee, Thanaporn;Chaiwang, Niraporn;Kaewkot, Chonlathee;Jaturasitha, Sanchai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.7
    • /
    • pp.968-975
    • /
    • 2018
  • Thailand is a country of native beef cattle resource farming. It has undergone rapid social and economic change in the past decade. Agricultural growth has been maintained by increasing the production of rice and cassava. Changing economic status also provides opportunities for beef cattle producers to meet increasing consumer demand for beef. Finishing beef cattle numbers in Thailand were about 1.0 M head in 2015. Beef produced in Thailand has exclusively been for domestic consumption. Only 1% of Thailand's beef cattle are for the premium market which is based on marbling score, 40% are sold into modern markets that consider muscling of cattle, and the remainder enter traditional markets. Cross-bred cattle for the premium market are raised within intensive systems. Most producers of premium beef are members of beef cooperatives, or have invested in their enterprises at high levels. Culled cow (native or cross-bred cattle) are mainly for small holder farm production. Malaysia, Indonesia, and other members of the Asian Economic Community (AEC) are set to become the largest beef market, which has been confirmed by 2015 through 2020 forecasts for consumption of beef that must increasingly be halal. These circumstances are likely to be challenging for beef producers in Thailand to gain a share of this market. Integration across all sectors involved in beef production in Thailand will be required.

Application of OECD Agricultural Water Use Indicator in Korea (우리나라에 적합한 OECD 농업용수 사용지표의 설정)

  • Hur, Seung-Oh;Jung, Kang-Ho;Ha, Sang-Keun;Song, Kwan-Cheol;Eom, Ki-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.5
    • /
    • pp.321-327
    • /
    • 2006
  • In Korea, there is a growing competitive for water resources between industrial, domestic and agricultural consumer, and the environment as many other OECD countries. The demand on water use is also affecting aquatic ecosystems particularly where withdrawals are in excess of minimum environmental needs for rivers, lakes and wetland habits. OECD developed three indicators related to water use by the agriculture in above contexts : the first is a water use intensity indicator, which is expressed as the quantity or share of agricultural water use in total national water utilization; the second is a water stress indicator, which is expressed as the proportion of rivers (in length) subject to diversion or regulation for irrigation without reserving a minimum of limiting reference flow; and the third is a water use efficiency indicator designated as the technical and the economic efficiency. These indicators have different meanings in the aspect of water resource conservation and sustainable water use. So, it will be more significant that the indicators should reflect the intrinsic meanings of them. The problem is that the aspect of an overall water flow in the agro-ecosystem and recycling of water use not considered in the assessment of agricultural water use needed for calculation of these water use indicators. Namely, regional or meteorological characteristics and site-specific farming practices were not considered in the calculation of these indicators. In this paper, we tried to calculate water use indicators suggested in OECD and to modify some other indicators considering our situation because water use pattern and water cycling in Korea where paddy rice farming is dominant in the monsoon region are quite different from those of semi-arid regions. In the calculation of water use intensity, we excluded the amount of water restored through the ground from the total agricultural water use because a large amount of water supplied to the farm was discharged into the stream or the ground water. The resultant water use intensity was 22.9% in 2001. As for water stress indicator, Korea has not defined nor monitored reference levels of minimum flow rate for rivers subject to diversion of water for irrigation. So, we calculated the water stress indicator in a different way from OECD method. The water stress indicator was calculated using data on the degree of water storage in agricultural water reservoirs because 87% of water for irrigation was taken from the agricultural water reservoirs. Water use technical efficiency was calculated as the reverse of the ratio of irrigation water to a standard water requirement of the paddy rice. The efficiency in 2001 was better than in 1990 and 1998. As for the economic efficiency for water use, we think that there are a lot of things to be taken into considerations to make a useful indicator to reflect socio-economic values of agricultural products resulted from the water use. Conclusively, site-specific, regional or meteorogical characteristics as in Korea were not considered in the calculation of water use indicators by methods suggested in OECD(Volume 3, 2001). So, it is needed to develop a new indicators for the indicators to be more widely applicable in the world.