• 제목/요약/키워드: Rice Canopy

검색결과 108건 처리시간 0.023초

열수지법(熱收支法)에 의한 벼논의 수온추정(水溫推定) (Estimation of Water Temperature by Heat Balance Method in Paddy Field.)

  • 이정택;윤성호;임정남;고견보
    • 한국환경농학회지
    • /
    • 제8권1호
    • /
    • pp.30-36
    • /
    • 1989
  • 벼 생육(生育)에 기온(氣溫)과 더불어 밀접(密接)한 영향(影響)을 주는 논의 수온(水溫) 환경(環境)의 생육시기별(生育時期別) 변화(變化)를 대기(大氣)의 온도(溫度), 습도(濕度)) 일사량(日射量)과 군락(群落)의 엽면적지수(葉面積指數)로써 추정(推定)하고자 1984년(年)에 수원(水原)과 진부(珍富)에서 측정조사(測定調査)하여 분석(分析)한 후 그 추정(推定) 수온(水溫)을 실측치(實測値)와 비교검토(比較檢討)한 결과(結果)를 요약(要約)하면 등음과 같다. 1. 벼 생육초기(生育初期)의 수온(水溫)은 대기기온(大氣氣溫)보다 최고(最高)${\cdot}$최저온도(最低溫度)가 모두 $1{\sim}2^{\circ}C$ 정도(程度)높았다. 2. 수면(水面)에 도달(到達)되는 순복사량(純輻射量)은 엽면적지수(葉面積指數)의 지수함수(指數函數)로 표현(表現)된다. 3. 벼의 엽면적지수(葉面積指數)가 $3{\sim}4$이상(以上)이 되면 수면(水面)에 도달(到達)되는 광량(光量)의 감쇠(減衰)로 논의 수온(水溫)은 대기기온(大氣氣溫)보다 낮아졌다. 4. 평야지(平野地)인 수원지방(水原地方)의 보통논에서는 조합법(組合法)을 이용(利用)한 추정수온(推定水溫)은 실측치(實測値)와 비슷한 경향(傾向)을 나타내어 대기기상(大氣氣象)에 의(依)한 논의 수온추정(水溫推定)이 가능(可能)한 것으로 판단(判斷)되었다. 그러나 산간고랭지(山間高冷地)인 진부(珍富)의 사질답(砂質畓)에서는 이 조합법(組合法)을 이용(利用)한 수온예측모형(水溫豫測模型)은 적용(適用)이 불가능(不可能)하였다.

  • PDF

Selection of the Most Sensitive Waveband Reflectance for Normalized Difference Vegetation Index Calculation to Predict Rice Crop Growth and Grain Yield

  • Nguyen Hung The;Lee Byun Woo
    • 한국작물학회지
    • /
    • 제49권5호
    • /
    • pp.394-406
    • /
    • 2004
  • A split-plot designed experiment including four rice varieties and 10 nitrogen levels was conducted in 2003 at the Experimental Farm of Seoul National University, Suwon, Korea. Before heading, hyperspectral canopy reflectance (300-1100nm with 1.55nm step) and nine crop variables such as shoot fresh weight (SFW), leaf area index, leaf dry weight, shoot dry weight, leaf N concentration, shoot N concentration, leaf N density, shoot N density and N nutrition index were measured at 54 and 72 days after transplanting. Grain yield, total number of spikelets, number of filled spikelets and 1000-grain weight were measured at harvest. 14,635 narrow-band NDVIs as combinations of reflectances at wavelength ${\lambda}l\;and\;{\lambda}2$ were correlated to the nine crop variables. One NDVI with the highest correlation coefficient with a given crop variable was selected as the NDVI of the best fit for this crop variable. As expected, models to predict crop variables before heading using the NDVI of the best fit had higher $r^2$ (>10\%)$ than those using common broad- band NDVI red or NDVI green. The models with the narrow-band NDVI of the best fit overcame broad- band NDVI saturation at high LAI values as frequently reported. Models using NDVIs of the best fit at booting showed higher predictive capacity for yield and yield component than models using crop variables.

Recommendation of Nitrogen Topdressing Rates at Panicle Initiation Stage of Rice Using Canopy Reflectance

  • Nguyen, Hung T.;Lee, Kyu-Jong;Lee, Byun-Woo
    • Journal of Crop Science and Biotechnology
    • /
    • 제11권2호
    • /
    • pp.141-150
    • /
    • 2008
  • The response of grain yield(GY) and milled-rice protein content(PC) to crop growth status and nitrogen(N) rates at panicle initiation stage(PIS) is critical information for prescribing topdress N rate at PIS(Npi) for target GY and PC. Three split-split-plot experiments including various N treatments and rice cultivars were conducted in Experimental Farm, Seoul National University, Korea in 2003-2005. Shoot N density(SND, g N in shoot $m^{-2}$) and canopy reflectance were measured before N application at PIS, and GY, PC, and SND were measured at harvest. Data from the first two years(2003-2004) were used for calibrating the predictive models for GY, PC, and SND accumulated from PIS to harvest using SND at PIS and Npi by multiple stepwise regression. After that the calibrated models were used for calculating N requirement at PIS for each of nine plots based on the target PC of 6.8% and the values of SND at PIS that was estimated by canopy reflectance method in the 2005 experiment. The result showed that SND at PIS in combination with Npi were successful to predict GY, PC, and SND from PIS to harvest in the calibration dataset with the coefficients of determination ($R^2$) of 0.87, 0.73, and 0.82 and the relative errors in prediction(REP, %) of 5.5, 4.3, and 21.1%, respectively. In general, the calibrated model equations showed a little lower performance in calculating GY, PC, and SND in the validation dataset(data from 2005) but REP ranging from 3.3% for PC and 13.9% for SND accumulated from PIS to harvest was acceptable. Nitrogen rate prescription treatment(PRT) for the target PC of 6.8% reduced the coefficient of variation in PC from 4.6% in the fixed rate treatment(FRT, 3.6g N $m^{-2}$) to 2.4% in PRT and the average PC of PRT was 6.78%, being very close to the target PC of 6.8%. In addition, PRT increased GY by 42.1 $gm^{-2}$ while Npi increased by 0.63 $gm^{-2}$ compared to the FRT, resulting in high agronomic N-use efficiency of 68.8 kg grain from additional kg N. The high agronomic N-use efficiency might have resulted from the higher response of grain yield to the applied N in the prescribed N rate treatment because N rate was prescribed based on the crop growth and N status of each plot.

  • PDF

Dry matter and grain production of a near-isogenic line carrying a 'Takanari' (high yielding, Indica) allele for increased leaf inclination angle in rice with the 'Koshihikari' (Japonica) genetic background

  • San, Nan Su;Otsuki, Yosuke;Adachi, Shunsuke;Yamamoto, Toshio;Ueda, Tadamasa;Tanabata, Takanari;Ookawa, Taiichiro;Hirasawa, Tadashi
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.32-32
    • /
    • 2017
  • To increase rice production, manipulating plant architecture, especially developing new high-yielding cultivars with erect leaves, is crucial in rice breeding programs. Leaf inclination angle determines the light extinction coefficient (k) of the canopy. Erect leaves increase light penetration into the canopy and enable dense plantings with a high leaf area index, thus increasing biomass production and grain yield. Because of erect leaves, the high-yielding indica rice cultivar 'Takanari' has smaller k during ripening than 'Koshihikari', a japonica cultivar with good eating quality. In our previous study, using chromosome segment substitution lines (CSSLs) derived from a cross between 'Takanari' and 'Koshihikari', we detected seven quantitative trait loci (QTLs) for leaf inclination angle on chromosomes 1 (two QTLs), 2, 3, 4, 7, and 12. In this study, we developed a near-isogenic line (NIL-3) carrying a 'Takanari' allele for increased leaf inclination angle on chromosome 3 in the 'Koshihikari' genetic background. We compared k, dry matter production, and grain yield of NIL-3 with those of 'Koshihikari' in the field from 2013 to 2016. NIL-3 had higher inclination angles of the flag, second, and third leaves at full heading and 3 (- 4) weeks after full heading and smaller k of the canopy at the ripening stage. Biomass at full heading and leaf area index at full heading and at harvest did not significantly differ between NIL-3 and 'Koshihikari'. However, biomass at harvest was significantly greater in NIL-3 than in 'Koshihikari' due to a higher net assimilation rate at the ripening stage. The photosynthetic rates of the flag and third leaves did not differ between NIL-3 and Koshihikari at ripening. Grain yield was higher in NIL-3 than 'Koshihikari'. Higher panicle number per square meter in NIL-3 contributed to the higher grain yield of NIL-3. We conclude that the QTL on chromosome 3 increases dry matter and grain production in rice by increasing leaf inclination angle.

  • PDF

태양광 반사율을 이용한 벼 군락의 엽면적지수 추정 (Estimation of Rice Canopy Leaf Area Index(LAI) by Spectral Reflectance of Solar Radiation in Paddy Field)

  • 이정택;이춘우;주문갑;홍석영
    • 한국작물학회지
    • /
    • 제42권2호
    • /
    • pp.173-181
    • /
    • 1997
  • 태양복사 스펙트럼을 이용하여 벼 군락의 엽면적지수를 비파괴적인 방법으로 추정하고자 1993년 경기도 수원기상대 포장에서 조생종 진부벼와 중만생종 대청벼, 일품벼를 공시하여 벼 군락의 태양광 반사특성과 엽면적지수의 시기별 변화를 조사한 결과는 다음과 같다. 1. 출수이전의 생육기간동안에 태양광의 파장별 반사율은 가시광 파장대에서는 0.1이하로 낮았고, 근적외광 파장대에서는 0.1∼0.5 이상이었다. 가시광 파장대에서는 LAI가 증가할수록 반사율이 감소하였고, 근적외광 파장대는 LAI가 증가할수록 반사율도 증가하였다. 2. 출수전에 근적외광 파장대(720∼1,100nm)의 반사율을 가시광 파장대 (400∼700nm)의 반사율로 나눈 비율이 LAI와 높은 상관을 보였으며, 가시광 파장대중에서는 녹색, 적색파장보다 청색파장(400∼500nm)의 반사율로 나눈 비율이 높은 상관을 보였다. 3. 근적외광 파장의 반사율을 청색파장의 반사율로 나눈 비율중에서 특히 R910/R460 비율이 LAI와 가장 높은 정의 상관을 보였다. 4. 출수이전의 R910/R460과 LAI의 회귀식을 이용한 추정식 Y=0.160799-X0.79776는 실측치와의 상관관계가 매우 높았다. 5. 출수이후엔 근적외광 파장(720∼1,100nm)의 반사율을 적색파장(600∼700nm)의 반사율로 나눈 비율이 청색이나 녹색파장의 반사율로 나눈 것보다 LAI와의 상관이 높았다.

  • PDF

벼의 성장단계별 색 변화에 관한 디지털 화상해석 (Digital Image Analysis(DIA) of Color Changes in Field Growing Stages for Rice)

  • 박종화;신용희;박민서
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2003년도 학술발표논문집
    • /
    • pp.623-626
    • /
    • 2003
  • Image analysis was performed with two color systems, Red-Green-Blue (RGB) values and normalized Hue-Saturation-Intensity (HSI). We conducted field studies in Cheongju to determine canopy spectral reflectance and digital image analysis of rice. Spectral reflectance measurements made with a portable spectrometer(LI-1800) correlated with growing stage and digital images for rice. Images in which the color was specified by the common RGB coordinates could be used when there was a sharp contrast between the color of the rice and that of the field soil. In the absence of sharp contrast, identification of the rice covered area was much easer after the color had been transformed into HSI coordinates. This study introduced fundamental theories in digital image analysis and applied that for field situations rice.

  • PDF

Relationship between RADARSAT Backscattering Coefficient and Rice Growth

  • Hong, Suk-Young;Hong, Sang-Hoon;Rim, Sang-Kyu
    • 대한원격탐사학회지
    • /
    • 제16권2호
    • /
    • pp.109-116
    • /
    • 2000
  • This study was carried out to assess the use of RADARSAT data which is C-band with HH polarization for the rice growth monitoring in Korea. Nine time-series data were taken by shallow incidence angle (standard beam mode 5 or 6) during rice growing season. And then, backscattering coefficients ($\sigma$$^{\circ}$) were extracted by calibration process for comparing with rice growth parameters such as plant height, leaf area index(LAI), and fresh and dry biomass. Field experimental data concerned with rice growth were collected 8 times for the ground truth at the study area, Tangjin, Chungnam, Korea. At the beginning of rice growth, backscattering coefficients were ranged from -l6~-l3dB when rice fields were not covered with rice canopy and flooded. At the maximum vegetative stage of rice, backscattering coefficients of the rice field were the highest ranging from -4.4dB~-3.1dB. The temporal variation of backscattering coefficient($\sigma$$^{\circ}$) in rice field was significant in this study. Backscattering coefficient ($\sigma$$^{\circ}$) of rice field was a little bit lower again after heading stage than before. This results show RADARSAT data is promising for rice monitoring.

Mapping Paddy Rice Varieties Using Multi-temporal RADARSAT SAR Images

  • Jang, Min-Won;Kim, Yi-Hyun;Park, No-Wook;Hong, Suk-Young
    • 대한원격탐사학회지
    • /
    • 제28권6호
    • /
    • pp.653-660
    • /
    • 2012
  • This study classified paddy fields according to rice varieties and monitored temporal changes in rice growth using SAR backscatter coefficients (${\sigma}^{\circ}$). A growing period time-series of backscatter coefficients was set up for nine fine-beam mode RADARSAT-1 SAR images from April to October 2005. The images were compared with field-measured rice growth parameters such as leaf area index (LAI), plant height, fresh and dry biomass, and water content in grain and plants for 45 parcels in Dangjin-gun, Chungnam Province, South Korea. The average backscatter coefficients for early-maturing rice varieties (13 parcels) ranged from -18.17 dB to -6.06 dB and were lower than those for medium-late maturing rice varieties during most of the growing season. Both crops showed the highest backscatter coefficient values at the heading stage (late July) for early-maturing rice, and the difference was greatest before harvest for early-maturing rice. The temporal difference in backscatter coefficients between rice varieties may play a key role in identifying early-maturing rice fields. On the other hand, comparisons with field-measured parameters of rice growth showed that backscatter coefficients decreased or remained on a plateau after the heading stage, even though the growth of the rice canopy had advanced.

분광반사특성을 이용한 벼의 생장량 추정 (Estimation of Paddy Rice Growth Increment by Using Spectral Reflectance Signature)

  • 홍석영;이정택;임상규;정원교;조인상
    • 대한원격탐사학회지
    • /
    • 제14권1호
    • /
    • pp.83-94
    • /
    • 1998
  • 분광반사 특성을 이용한 벼 군락의 생육시 기별 생장량을 추정하기 위하여 분광방사계 (GER Inc. SFOV : 0.35~2.5 $\mu\textrm{m}$)를 이용하여 이앙기부터 수확기가지 매 1주 또는 2주 간격으로 분광반사 특성을 조사하였다. Landsat TM 동등 밴드의 평균반사율을 계산하여 엽면적지수와 건물량과 같은 벼의 중요한 생장량 관련 변수와의 관계를 살펴 보았다. 생육단계에 따른 벼 군락의 질적변화(출수. 개화, 등숙 등)와 건물량이나 엽면적의 증감에 따른 양적변화에 따라 분광반사 광량이 달라지는데 가시광선대(0.4~0.7 $\mu\textrm{m}$)의 경우 청색능.녹색능.적색능에서 모두 출수기까지는 생장량이 많을수록 반사율은 낮아졌으며, 출수 후 이삭이 성숙하면서 반사율은 높아졌는데 특히 적색능의 반사율은 다른 두 가시광선 파장 영역에 비하여 더 높아지는 경향이었다. 근적외선대(0.7~1.1 $\mu\textrm{m}$)의 경우 생장량이 많을수록 반사율은 약 45 %까지 높아졌다가 유수분화기 후 감소하여 등숙기에는 약 20 %로 낮아졌다. 또한 출수 이전의 분광반사 특성과 벼의 생장량 관련 변수와의 상관계수 값이 출수 이후보다 높게 나타났다. 한편, TM 동등 밴드의 평균반사율($\bar{p}$$_{TMi}$) 또는 밴드간 비율값 RV(Ratio Value ; $\bar{p}$$_{TMi}$/$\bar{p}$$_{TMi}$)와 엽면적지수 및 건물량과의 상관관계를 살펴본 바, 엽면적지수와 건물량은 가시광 영역의 $\bar{p}$$_{TMi}$, $\bar{p}$$_{TM1}$, $\bar{p}$$_{TM2}$, $\bar{p}$$_{TM3}$과 밴드간 비율값 중 $\bar{p}$$_{TM4}$/$\bar{p}$$_{TM3}$, $\bar{p}$$_{TM4}$/$\bar{p}$$_{TM2}$, $\bar{p}$$_{TM4}$/$\bar{p}$$_{TM1}$, log($\bar{p}$$_{TM4}$/$\bar{p}$$_{TM3}$) 등과 상관이 높게 나타났다.