• 제목/요약/키워드: Rice (O. sativa)

검색결과 119건 처리시간 0.031초

Effect of Kaolin on Arsenic Accumulation in Rice Plants (Oryza Sativa L.) Grown in Arsenic Contaminated Soils

  • Koonsom, Titima;Inthorn, Duangrat;Sreesai, Siranee;Thiravetyan, Paitip
    • Environmental Engineering Research
    • /
    • 제19권3호
    • /
    • pp.241-245
    • /
    • 2014
  • The As accumulation in part of roots, shoots, husks and grains of rice plants was significantly decreased with the increasing dosage of kaolin addition from 0.5% to 10% w/w. Kaolin addition could reduce As accumulation in rice plants, which mainly could be attributed to the formation of stable crystalline Al oxides bound As that decreased the available As in soil with decreased As accumulation in rice plants. The pH values of the soils did not change significantly when amended with kaolin. The pH values of the soils was neural that proper to adsorb of arsenic with $Al_2O_3$. Arsenic tends to adsorb with $Al_2O_3$ at acid neutral pH and with desorbing at alkaline pH. The dry weight of rice plant was significantly increased with the increasing dosage of kaolin addition from 2.5% to 10% w/w. The highest dry weight of rice plants was 6.67 g/pot achieved at kaolin addition of 10% w/w with about 13% increasing over the control, which was probably attributed to the highest As concentration formation with kaolin at this dosage. The results of this study indicated that kaolin has the potential to reduce As accumulation in rice plants and enhance the dry weight of rice plants.

Effects of Biofertilizer on the Quality and Antioxidant Property of Rice (Oryza sativa L.)

  • Rico, Cyren Mendoza;Bhuiyan, Mohammad Kamrul Islam;Mintah, Lemuel O.;Shin, Dong-Il;Chung, Il-Kyung;Son, Tae-Kwon;Lee, Sang-Chul
    • 한국작물학회지
    • /
    • 제52권3호
    • /
    • pp.274-280
    • /
    • 2007
  • The effect of biofertilizer in enhancing nutrient quality and antioxidant property of rice grain was investigated. The experiment was carried out in a randomized complete block design with 3 replications and 7 treatments namely : RF = $N-P_2O_5-K_2O(11-5.5-4.8kg\;10a^{-1});$ half of the recommended fertilizer rate, $HRF=N-P_2O_5-K_2O(5.5-2.75-2.4kg\;10a^{-1}):$ HRF+Bio 250=HRF combined with 250 kg Biofertilizer 10 $a^{-1}$; HRF+Bio 500=HRF combined with 500 kg Biofertilizer 10 $a^{-1};$ Bio 250=250 kg Biofertilizer 10 $a^{-1};$ Bio 500=500 kg Biofertilizer 10 $a^{-1};$ and NF=No Fertilizer. Results showed that HRF+Bio 500 obtained a significantly higher protein content but a significantly lower amylose content compared with RF and NF treatments. Highest phytic acid content was recorded in NF treatment while the lowest was observed in HRF+500 treatment. The highest values in both electron donating ability and reducing power were obtained in HRF+Bio 500 treatment. All treatments obtained higher reducing power than that of the RF treatment and that NF treatment showed comparable values in both electron donating ability and reducing power with those of the treated plots. Highest antimutagenicity property was also observed in HRF+Bio 500 treatment followed by Bio 500 treatment. This study showed the possibility of using biofertilizer to enhance nutritional quality and antioxidant property of rice.

Response of Antioxidative Enzymes of Two Rice Cultivars to Ozone Exposure and Nutrient Supply

  • Lee, Sang-Chul;Hwan, Cho-Jeong;Park, Shin-Young;Son, Tae-Kwon
    • 한국작물학회지
    • /
    • 제46권1호
    • /
    • pp.40-46
    • /
    • 2001
  • Ozone ($O_3$)-induced changes in chlorophyll content and specific activities of antioxidant enzymes, such as superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidase (GPX), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) were investigated in two rice cultivars (Oryza sativa L.) grown under variable nutrient treatments. For this study, two rice cultivars of Ilpumbyeo (IL) and Keumobyeo#l (KM), which were known as resistant and susceptible to $O_3$, respectively, were exposed to $O_3$at 0.15ppm for 30 days and investigated with 10 days interval. The available nutrient regimes were varied by doubling the supply of nitrogen (N), phosphorus (P) and potassium (K) Within a basic fertilizer status (N, P, K; 15, 12, 12kg/l0a$^{-1}$ ). In both cultivars and at all nutrient status, chlorophyll content in $O_3$-treated plants decreased with prolonged treatment period, although higher N, P and K supply with $O_3$ treatment alleviated the decrease in chlorophyll content. The activities of almost all enzymes investigated for this study were decreased during initial stages of $O_3$- exposure except GPX which maintained higher activity throughout the exposure period than the non-treated plant. However, the antioxidant enzymes in $O_3$-treated plants showed almost the same or higher activities on 30 days after $O_3$ - exposure. The most significant changes in activities were observed in GR of the $O_3$-treated leaves. With the prolonged treatment period, the activity of GR at 30 days was increased by 3-8 times compared to those in 10 days. Most of the investigated enzymes showed very similar tendency to $O_3$ treatment in all fertilizer status. There was no observed evidence for enhanced detoxification of $O_3$-derived activated oxygen species in plants grown under higher fertilizer status compared with that in plants grown under basic fertilizer status. The increase in the activities of SOD, APX and GR in rice leaves by relatively long-term treatment with $O_3$ at low concentration is considered to indicate that the plant became adapted to the $O_3$ stress and the protection system increased its capacity to scavenge toxic oxygen species. Our results in two rice cultivars indicated that there was little difference in the activities of antioxidant enzymes between IL and KM, which were known as resistant and susceptible cultivar to $O_3$

  • PDF

The NILs from an interspecific cross show enhanced plant height and antioxidant activity

  • Jeon, Yun-A;Kim, Dong-Min;Ahn, Sang-Nag
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.118-118
    • /
    • 2017
  • A high-resolution physical map targeting a cluster of yield-related QTLs on the long arm of rice chromosome 9 was constructed across a 35.5kb region containing the six predicted genes including the probable ascorbate peroxidase (OsApx). The $BC_3F_6$ near isogenic lines (NILs) were derived from a cross between the Oryza sativa Hwaseong and O. rufipogon. The plant height and length of internodes were compared between Hwaseong and NILs. There were significant differences in plant height between Hwaseong and NILs. The NILs internodes were longer than Hwaseong, showing dramatic elongation in the first and fourth internodes; thereby, leading to increased plant height. The antioxidant activity of Hwaseong and NILs was also analyzed by 3,3-diaminobenzidine (DAB) staining and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. In order to understand whether or not OsApx gene is important in scavenging $H_2O_2$ in rice, DAB staining was used. Intense dark-brown coloration was observed in Hwaseong than NILs. In addition, DPPH scavenging ability of Hwaseong showed lower value than NILs. These results indicated that the internode elongation and antioxidant activity might possibly be controlled by OsApx. To know the causative relationship of the gene and phenotype, we will further analyze the gene expression and use it for functional studies by complementation transgenic approach.

  • PDF

Locating QTLs controlling overwintering seedling rate in perennial glutinous rice 89-1 (Oryza sativa L.)

  • Deng, Xiaoshu;Gan, Lu;Liu, Yan;Luo, Ancai;Jin, Liang;Chen, Jiao;Tang, Ruyu;Lei, Lixia;Tang, Jianghong;Zhang, Jiani;Zhao, Zhengwu
    • Genes and Genomics
    • /
    • 제40권12호
    • /
    • pp.1351-1361
    • /
    • 2018
  • A new cold tolerant germplasm resource named glutinous rice 89-1 (Gr89-1, Oryza sativa L.) can overwinter using axillary buds, with these buds being ratooned the following year. The overwintering seedling rate (OSR) is an important factor for evaluating cold tolerance. Many quantitative trait loci (QTLs) controlling cold tolerance at different growth stages in rice have been identified, with some of these QTLs being successfully cloned. However, no QTLs conferring to the OSR trait have been located in the perennial O. sativa L. To identify QTLs associated with OSR and to evaluate cold tolerance. 286 $F_{12}$ recombinant inbred lines (RILs) derived from a cross between the cold tolerant variety Gr89-1 and cold sensitive variety Shuhui527 (SH527) were used. A total of 198 polymorphic simple sequence repeat (SSR) markers that were distributed uniformly on 12 chromosomes were used to construct the linkage map. The gene ontology (GO) annotation of the major QTL was performed through the rice genome annotation project system. Three main-effect QTLs (qOSR2, qOSR3, and qOSR8) were detected and mapped on chromosomes 2, 3, and 8, respectively. These QTLs were located in the interval of RM14208 (35,160,202 base pairs (bp))-RM208 (35,520,147 bp), RM218 (8,375,236 bp)-RM232 (9,755,778 bp), and RM5891 (24,626,930 bp)-RM23608 (25,355,519 bp), and explained 19.6%, 9.3%, and 11.8% of the phenotypic variations, respectively. The qOSR2 QTL displayed the largest effect, with a logarithm of odds score (LOD) of 5.5. A total of 47 candidate genes on the qOSR2 locus were associated with 219 GO terms. Among these candidate genes, 11 were related to cell membrane, 7 were associated with cold stress, and 3 were involved in response to stress and biotic stimulus. OsPIP1;3 was the only one candidate gene related to stress, biotic stimulus, cold stress, and encoding a cell membrane protein. After QTL mapping, a total of three main-effect QTLs-qOSR2, qOSR3, and qOSR8-were detected on chromosomes 2, 3, and 8, respectively. Among these, qOSR2 explained the highest phenotypic variance. All the QTLs elite traits come from the cold resistance parent Gr89-1. OsPIP1;3 might be a candidate gene of qOSR2.