• Title/Summary/Keyword: Ricci operator

Search Result 41, Processing Time 0.018 seconds

Certain Characterization of Real Hypersurfaces of type A in a Nonflat Complex Space Form

  • Ki, U-Hang
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.1
    • /
    • pp.181-190
    • /
    • 2021
  • Let M be a real hypersurface with almost contact metric structure (ϕ, ��, η, g) in a nonflat complex space form Mn(c). We denote S and R�� by the Ricci tensor of M and by the structure Jacobi operator with respect to the vector field �� respectively. In this paper, we prove that M is a Hopf hypersurface of type A in Mn(c) if it satisfies R��ϕ = ϕR�� and at the same time R��(Sϕ - ϕS) = 0.

BIHARMONIC HYPERSURFACES WITH RECURRENT OPERATORS IN THE EUCLIDEAN SPACE

  • Esmaiel, Abedi;Najma, Mosadegh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.6
    • /
    • pp.1595-1603
    • /
    • 2022
  • We show how some of well-known recurrent operators such as recurrent curvature operator, recurrent Ricci operator, recurrent Jacobi operator, recurrent shape and Weyl operators have the significant role for biharmonic hypersurfaces to be minimal in the Euclidean space.

COMMUTING STRUCTURE JACOBI OPERATOR FOR SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 IN COMPLEX SPACE FORMS

  • KI, U-Hang;SONG, Hyunjung
    • East Asian mathematical journal
    • /
    • v.38 no.5
    • /
    • pp.549-581
    • /
    • 2022
  • Let M be a semi-invariant submanifold with almost contact metric structure (𝜙, 𝜉, 𝜂, g) of codimension 3 in a complex space form Mn+1(c), c≠ 0. We denote by S and R𝜉 be the Ricci tensor of M and the structure Jacobi operator in the direction of the structure vector 𝜉, respectively. Suppose that the third fundamental form t satisfies dt(X, Y) = 2𝜃g(𝜙X, Y) for a certain scalar 𝜃(≠ 2c) and any vector fields X and Y on M. In this paper, we prove that M satisfies R𝜉S = SR𝜉 and at the same time R𝜉𝜙 = 𝜙R𝜉, then M is a Hopf hypersurface of type (A) provided that the scalar curvature s of M holds s - 2(n - 1)c ≤ 0.

Submanifolds of Codimension 3 in a Complex Space Form with Commuting Structure Jacobi Operator

  • Ki, U-Hang;Song, Hyunjung
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.1
    • /
    • pp.133-166
    • /
    • 2022
  • Let M be a semi-invariant submanifold with almost contact metric structure (𝜙, 𝜉, 𝜂, g) of codimension 3 in a complex space form Mn+1(c) for c ≠ 0. We denote by S and R𝜉 be the Ricci tensor of M and the structure Jacobi operator in the direction of the structure vector 𝜉, respectively. Suppose that the third fundamental form t satisfies dt(X, Y) = 2𝜃g(𝜙X, Y) for a certain scalar 𝜃 ≠ 2c and any vector fields X and Y on M. In this paper, we prove that if it satisfies R𝜉𝜙 = 𝜙R𝜉 and at the same time S𝜉 = g(S𝜉, 𝜉)𝜉, then M is a real hypersurface in Mn(c) (⊂ Mn+1(c)) provided that $\bar{r}-2(n-1)c{\leq}0$, where $\bar{r}$ denotes the scalar curvature of M.

REAL HYPERSURFACES OF THE JACOBI OPERATOR WITH RESPECT TO THE STRUCTURE VECTOR FIELD IN A COMPLEX SPACE FORM

  • AHN, SEONG-SOO
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.2
    • /
    • pp.279-294
    • /
    • 2005
  • We study a real hypersurface M satisfying $L_{\xi}S=0\;and\;R_{\xi}S=SR_{\xi}$ in a complex hyperbolic space $H_n\mathbb{C}$, where S is the Ricci tensor of type (1,1) on M, $L_{\xi}\;and\;R_{\xi}$ denotes the operator of the Lie derivative and the Jacobi operator with respect to the structure vector field e respectively.

Elliptic Linear Weingarten Surfaces

  • Kim, Young Ho
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.3
    • /
    • pp.547-557
    • /
    • 2018
  • We establish some characterizations of isoparametric surfaces in the three-dimensional Euclidean space, which are associated with the Laplacian operator defined by the so-called II-metric on surfaces with non-degenerate second fundamental form and the elliptic linear Weingarten metric on surfaces in the three-dimensional Euclidean space. We also study a Ricci soliton associated with the elliptic linear Weingarten metric.

LEFT INVARIANT LORENTZIAN METRICS AND CURVATURES ON NON-UNIMODULAR LIE GROUPS OF DIMENSION THREE

  • Ku Yong Ha;Jong Bum Lee
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.1
    • /
    • pp.143-165
    • /
    • 2023
  • For each connected and simply connected three-dimensional non-unimodular Lie group, we classify the left invariant Lorentzian metrics up to automorphism, and study the extent to which curvature can be altered by a change of metric. Thereby we obtain the Ricci operator, the scalar curvature, and the sectional curvatures as functions of left invariant Lorentzian metrics on each of these groups. Our study is a continuation and extension of the previous studies done in [3] for Riemannian metrics and in [1] for Lorentzian metrics on unimodular Lie groups.

JACOBI OPERATORS ALONG THE STRUCTURE FLOW ON REAL HYPERSURFACES IN A NONFLAT COMPLEX SPACE FORM II

  • Ki, U-Hang;Kurihara, Hiroyuki
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.6
    • /
    • pp.1315-1327
    • /
    • 2011
  • Let M be a real hypersurface of a complex space form with almost contact metric structure (${\phi}$, ${\xi}$, ${\eta}$, g). In this paper, we study real hypersurfaces in a complex space form whose structure Jacobi operator $R_{\xi}=R({\cdot},\;{\xi}){\xi}$ is ${\xi}$-parallel. In particular, we prove that the condition ${\nabla}_{\xi}R_{\xi}=0$ characterizes the homogeneous real hypersurfaces of type A in a complex projective space or a complex hyperbolic space when $R_{\xi}{\phi}S=R_{\xi}S{\phi}$ holds on M, where S denotes the Ricci tensor of type (1,1) on M.

TRANSVERSE HARMONIC FIELDS ON RIEMANNIAN MANIFOLDS

  • Pak, Jin-Suk;Yoo, Hwal-Lan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.73-80
    • /
    • 1992
  • We discuss transverse harmonic fields on compact foliated Riemannian manifolds, and give a necessary and sufficient condition for a transverse field to be a transverse harmonic one and the non-existence of transverse harmonic fields. 1. On a foliated Riemannian manifold, geometric transverse fields, that is, transverse Killing, affine, projective, conformal fields were discussed by Kamber and Tondeur([3]), Molino ([5], [6]), Pak and Yorozu ([7]) and others. If the foliation is one by points, then transverse fields are usual fields on Riemannian manifolds. Thus it is natural to extend well known results concerning those fields on Riemannian manifolds to foliated cases. On the other hand, the following theorem is well known ([1], [10]): If the Ricci operator in a compact Riemannian manifold M is non-negative everywhere, then a harmonic vector field in M has a vanishing covariant derivative. If the Ricci operator in M is positive-definite, then a harmonic vector field other than zero does not exist in M.

  • PDF

On Generalized 𝜙-recurrent Kenmotsu Manifolds with respect to Quarter-symmetric Metric Connection

  • Hui, Shyamal Kumar;Lemence, Richard Santiago
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.2
    • /
    • pp.347-359
    • /
    • 2018
  • A Kenmotsu manifold $M^n({\phi},\;{\xi},\;{\eta},\;g)$, (n = 2m + 1 > 3) is called a generalized ${\phi}-recurrent$ if its curvature tensor R satisfies $${\phi}^2(({\nabla}_wR)(X,Y)Z)=A(W)R(X,Y)Z+B(W)G(X,Y)Z$$ for all $X,\;Y,\;Z,\;W{\in}{\chi}(M)$, where ${\nabla}$ denotes the operator of covariant differentiation with respect to the metric g, i.e. ${\nabla}$ is the Riemannian connection, A, B are non-vanishing 1-forms and G is given by G(X, Y)Z = g(Y, Z)X - g(X, Z)Y. In particular, if A = 0 = B then the manifold is called a ${\phi}-symmetric$. Now, a Kenmotsu manifold $M^n({\phi},\;{\xi},\;{\eta},\;g)$, (n = 2m + 1 > 3) is said to be generalized ${\phi}-Ricci$ recurrent if it satisfies $${\phi}^2(({\nabla}_wQ)(Y))=A(X)QY+B(X)Y$$ for any vector field $X,\;Y{\in}{\chi}(M)$, where Q is the Ricci operator, i.e., g(QX, Y) = S(X, Y) for all X, Y. In this paper, we study generalized ${\phi}-recurrent$ and generalized ${\phi}-Ricci$ recurrent Kenmotsu manifolds with respect to quarter-symmetric metric connection and obtain a necessary and sufficient condition of a generalized ${\phi}-recurrent$ Kenmotsu manifold with respect to quarter symmetric metric connection to be generalized Ricci recurrent Kenmotsu manifold with respect to quarter symmetric metric connection.