• Title/Summary/Keyword: Ribbed Channel

Search Result 39, Processing Time 0.024 seconds

Large Eddy Simulation of Flow and Heat Transfer in a Rotating Ribbed Channel (요철이 설치된 회전하는 채널 내부의 유동 및 열전달의 큰에디모사)

  • Ahn, Joon;Choi, Hae-Cheon;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.193-198
    • /
    • 2003
  • A gas turbine blade has an internal cooling passage equipped with ribs, which can be modeled as a ribbed channel. We have studied a flow inside a ribbed channel using large eddy simulaton (LES) with a dynamic subgrid-scale model. The simulation results are compared with the experimental ones. The turbulence intensity and local heat transfer near the rib have not been well captured by the conventional Reynolds averaged Navier-Stokes simulation (RANS). However, these variables obtained by the present LES agree well with those from experiments. From the instantaneous velocity and temperature fields, we explain the mechanisms responsible for the local peaks in the heat transfer distribution along the channel wall. We have also investigated the effect of rotation on the flow and heat transfer in the ribbed channel.

  • PDF

Experimental and Numerical Investigation on Heat Transfer and Fluid Flow Characteristics in the Ribbed Square Channel (거친 사각채널에서 열전달과 유체유동 특성에 관한 실험 및 수치해석)

  • Kang, Ho-Keun;Baer, Sung-Taek;Lee, Dae-Hee;Ahn, Soo-Whan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.275-283
    • /
    • 2006
  • Experiment and three dimensional numerical investigations of incompressible turbulent flow through square channels with one- and two-sided ribbed walls are performed to determine pressure drop and heat transfer. The CFX(version 5.7) software package is used for the computation. The ribbed walls have a $45^{\circ}$ inclined square rib. Uniform heat flux is maintained on whole inner heat transfer channel area. The numerical results coincide with experimental data that obtained for $7,600{\le}Re{\le}24.900$, the pitch-to-rib height ratio (p/e) of 8.0. and the rib height-to-channel hydraulic diameter ratio ($e/D_h$) of 0.0667. The results show that values of local heat transfer coefficient and friction factor in the channel with two-sided ribbed wall are higher than those in the channel with one-sided ribbed walls.

Heat Transfer Characteristics in a Leading Edge Cooling Channel of a Turbine Blade with Various Rib Arrangements (터빈 기익 선단부에 설치된 냉각유로에서의 요철 배열에 따른 열전달 특성)

  • Lee, Dong-Hyun;Kim, Kyung-Min;Rhee, Dong-Ho;Cho, Hyung-Hee
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.459-466
    • /
    • 2005
  • The present study investigates the heat transfer characteristics of a triangular channel. Three different rib configurations are tested. The ribs are installed on two sides of the channel. The rib height (e) to channel hydraulic diameter is 0.079 and the rib-to-rib pitch (p) is 8 times of the rib height. The rotation number ranges from 0.0 to 0.1 while the Reynolds number is fixed at 10,000. The copper blocks with heaters are installed on the channel walls to measure the regionally averaged heat transfer coefficients. For the stationary $45^{\circ}$ and $135^{\circ}$ ribbed channels, a pair of counter rotating vortices is induced by the angled rib arrangements, and high heat transfer coefficients are obtained on the regions near the inner wall for the $45^{\circ}$ ribbed channel and near the leading edge for the $90^{\circ}$ ribbed channel. The heat transfer coefficients of angled ribbed channels are changed little with rotation, whereas those of the transverse ribbed channel are changed significantly with rotation.

  • PDF

Heat Transfer and Frictions in the Rectangular Divergent Channel with Ribs on One Wall

  • Lee, MyungSung;Ahn, SooWhan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.352-357
    • /
    • 2016
  • An investigation of ribbed divergent channel was undertaken to determine the effect of rib pitch to height ratio on total friction factor and heat transfer results in the fully developed regime. The ribbed divergent rectangular channel with the channel exit hydraulic diameter ($D_{ho}$) to inlet channel hydraulic diameter ($D_{hi}$) ratio of 1.16 with wall inclination angle of 0.72 deg, at which the ratios (p/e) of 6,10, and 14 are considered. The ribbed straight channel of $D_{ho}/D_{hi}=1.0$ were also used. The ribbed divergent wall is manufactured with a fixed rib height (e) of 10 mm and the ratio of rib spacing (p) to height 6, 10, and 14. The measurement was run with range of Reynolds numbers from 24,000 to 84,000. The comparison shows that the ratio of p/e=6 has the greatest thermal performance in the divergent channel under two constraints; identical mass flow rate and identical pressure drop.

Heat Transfer and Friction in Rectangular Convergent Channels with Ribs on One Wall

  • Kim, Won-Cheol;Lee, Myung-Sung;Bae, Sung-Taek;Ahn, Soo-Whan
    • Journal of Power System Engineering
    • /
    • v.18 no.2
    • /
    • pp.12-18
    • /
    • 2014
  • The local heat transfer of developed turbulent flows in the stationary ribbed rectangular convergent channels has been investigated experimentally. The rectangular convergent channels with one ribbed surface only have the inclination of $0.72^{\circ}$ and $1.43^{\circ}$ at which the ribbed wall is manufactured with a fixed rib height (e) of 10 mm and the ratio of rib spacing (p) to height (e) =10. The measurement was conducted within the range of Reynolds numbers from 15,000 to 89,000. The local heat transfer characteristics of the rectangular convergent channels are quite different from those of the ribbed square straight channel.

An Experimental Studies on Heat Transfer and Friction Factor in a Square Channel with Varying Number of Ribbed Walls

  • Oh Se-Kyung;Kim Won-Cheol;Ahn Soo-Whan;Kang Ho-Keun;Kim Myoung-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.281-289
    • /
    • 2005
  • An experimental study on the heat transfer and friction characteristics of a fully developed turbulent air flow in a square channel with $45^{\circ}$ inclined ribs on one, two, and four walls is reported. Tests were performed for Reynolds number ranging from 7,600 to 24,900. The pitch-to-rib height ratio, p/e, was kept at 8 and rib height-to-channel hydraulic diameter ratio, $e/D_h$, was kept at 0.0667. The heat transfer coefficient and friction factor values were enhanced with the increase in the number of ribbed walls. Results of this investigation could be used in various applications of internal channel turbulent flows involving different number of roughened walls.

Conjugate Heat Transfer Characteristics in a Ribbed Channel:Effect of Reynolds Number and Heat Capacity Ratio (요철이 설치된 채널 내에서 레이놀즈수와 열용량비에 따른 복합열전달 특성)

  • Song, Jeong-Chul;Ahn, Joon;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2297-2302
    • /
    • 2007
  • Numerical simulations are conducted to analyze conjugate heat transfer characteristics in a ribbed channel. In this simulation, the effects of Reynolds number and heat capacity of the solid channel wall on convective heat transfer are observed in the turbulent flow regime. In the case of the conducting wall against isothermal wall, the relative ratio of the thermal resistance between the solid wall and the flow field varies with Reynolds number. Thus the characteristics of the conjugate heat transfer are changed with the Reynolds number. Heat capacity ratio affects the temperature fluctuation inside solid wall. The temperature fluctuation inside the solid wall decreases with increasing the heat capacity of the solid wall so that the convective heat transfer increases. When the thermal conductivity ratio is smaller than 10, the effects of flow characteristics on heat transfer are changed.

  • PDF

Study on Development of High Performance Evaporator for Automotive Air Conditioner (자동차 공조용 증발기의 고성능화에 관한 연구)

  • Kang, J.K.;Kim, K.H.;Park, T.Y.;Kim, J.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.1
    • /
    • pp.73-80
    • /
    • 1995
  • The object of the present study is to develop a high performance evaporator for automotive air conditioner. The experiment has been conducted on evaporative heat transfer coefficient inside a plate type heat exchanger with a sharp 180-degree turn flow. The test plates have different formed surface, cross-ribbed channel and elliptical-ribbed channel. Also experimental study has been performed to determine optimal design in elliptical-ribbed plate heat exchanger with different turn clearance. In addition to the above experiments, refrigerant behavior and surface temperature distribution in the plate heat exchanger were observed using color thermoviewer(infrared thermometer). In this experiment, working fluid was used R-12 and test conditions were as follows : (1) saturation pressure of $2.116kg/cm^2$, (2) mass fluxes of 40 to $70kg/m^2s$, (3) heat fluxes of 4,500 to $7,300W/m^2$, (4) inlet quality of 0.1 to 0.7. The results indicated that the evaporative heat transfer coefficient of an elliptical-ribbed plate heat exchanger was higher than that of cross-ribbed plate heat exchanger. Also optimal turn clearance in an elliptical-ribbed plate heat exchanger was determined.

  • PDF

Effect of Rib Angle on Thermal Performance in a Two Wall Convergent/Divergent Channel with Ribs on One Wall (양측면 수축/확대 사각채널에서 한면에 설치된 리브의 각도가 열성능에 미치는 효과)

  • Ahn, Soo Whan;Lee, Myung Sung;Bae, Sung Taek
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.4
    • /
    • pp.195-200
    • /
    • 2015
  • The thermal performance in the channels with two-wall rectangular convergent/divergent cross-sectional areas along the axial distance was investigated experimentally. The ribbed rectangular convergent/divergent channels were manufactured with a fixed rib height (e) = 10 mm and the ratio of rib spacing (p) to height (e) = 10. Three different parallel angled ribs (a = $30^{\circ}$, $45^{\circ}$, and $60^{\circ}$) were each placed on the channel's one sided wall only. The convergent channel of $D_{ho}/D_{hi}=0.67$ and the divergent channel of $D_{ho}/D_{hi}=1.49$ were considered. The ribbed divergent channel produced better thermal performance than the ribbed convergent channel in three different restrictions; identical flow rate, identical pumping power, and identical pressure loss.

Effect of Rib Pitch on Heat Transfer and Friction Factor in a Two Wall Divergent Channel (2벽면 확대 사각채널에서 리브 피치가 열전달과 마찰계수에 미치는 효과)

  • Ahn, Soo Whan;Lee, Myung Sung;Jeong, Seong Soo;Bae, Sung Taek
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.4
    • /
    • pp.175-180
    • /
    • 2014
  • Experimental investigations of the heat transfer and friction factors in the ribbed divergent rectangular channel with the channel exit hydraulic diameter to inlet hydraulic diameter ratio of 1.16 were performed. The surface heaters were mounted onto the two opposite walls. The main experimental parameter is the ratio of rib pitch (p) to height (e), at which the ratios (p/e) of 6, 10, and 14 are considered in the channel with ribs on one wall only. The straight ribbed square channel is also considered as a comparison. The major findings are that the ratio of p/e = 6 shows the highest values in the heat transfer and the ratio of p/e = 10 indicates the greatest friction factor in the ribbed divergent channel. Editor's note:No major changes or corrections needed. Well written.