• Title/Summary/Keyword: Rib Arrangement

Search Result 33, Processing Time 0.02 seconds

Numerical Study of the Rib Arrangements for Enhancing Heat Transfer in a Two-pass Channel of Large Aspect Ratio (종횡비가 큰 이차유로에서 냉각성능 향상을 위한 요철배열 연구)

  • Han, Sol;Choi, Seok Min;Sohn, Ho-Seong;Cho, Hyung Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.3
    • /
    • pp.161-169
    • /
    • 2017
  • The present study investigated the effect of the rib arrangement and a guide vane for enhancing internal cooling of the blade. Two types of rib arrangements were used in the first and second passage in parallel. Aspect ratio of the channel was 5 and a fixed Reynolds number based on hydraulic diameter was 10,000. The attack angle of rib was $60^{\circ}$, rib pitch-to-height ratio (p/e) was 10, and the rib height-to-hydraulic-diameter ratio ($e/D_h$) was 0.075. The effect of an interaction between Dean vortices and the secondary vortices from the first passage was observed. Overall, the attack angle of rib in the first passage was dominant factor to heat transfer and flow patterns in turning region. Also, the channel with a guide vane showed enhanced heat transfer at the tip surface with reducing flow separation and recirculation.

Heat/Mass Transfer Augmentation in a Square Duct . Roughened with Angled Discrete Ribs Having Narrow Gaps (정사각 덕트 내에서 열/물질전달 촉진을 위한 경사진 단락 요철의 좁은 틈새 효과)

  • Wu, Seong-Je;Lee, Sei-Young;Choi, Chung;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.150-158
    • /
    • 2002
  • Local heat/mass transfer and friction loss in a square duct roughened with various types of continuous and discrete rib turbulators are investigated. The combined effects of the gap flows of the discrete ribs and the secondary flows are examined for the purpose of the reduction of thermally weak regions and the promotion of the uniformity of heat/mass transfer distributions as well as the ;augmentation of average heat/mass transfer. The rib-to-rib pitch to the rib height ratio (p/e) of 8 and the rib angles of 90° and 60° are selected with e/D$\_$h/=0.08. The vortical structure of the secondary flows induced by the parallel angled arrays are quite distinct from that induced by the cross angled arrays. This distinction influences on heat/mass transfer and friction loss in all the tested cases. The gap flows of the discrete ribs reduce the strength of the secondary flows but promote local turbulence and flow mixing. Consequently, the angled discrete ribs with the small gaps provide a more uniform heat/mass transfer distribution sustaining high average heat/mass transfer.

Effect of Cross/Parallel Rib Configurations on Heat/Mass Transfer in Rotating Two-Pass Turbine Blade Internal Passage (회전하는 터빈 블레이드 내부 이차냉각유로에서 엇갈린요철과 평행요철이 열/물질전달에 미치는 영향)

  • Lee, Se-Yeong;Lee, Dong-Ho;Jo, Hyeong-Hui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.9
    • /
    • pp.1249-1259
    • /
    • 2002
  • The present study investigates the convective heat/mass transfer inside a cooling passage of rotating gas-turbine blades. The rotating duct has various configurations made of ribs with 70。 attack angle, which are attached on leading and trailing surfaces. A naphthalene sublimation technique is employed to determine detailed local heat transfer coefficients using the heat and mass transfer analogy. The present experiments employ two-surface heating conditions in the rotating duct because the surfaces, exposed to hot gas stream, are pressure and suction side surfaces in the middle passages of an actual gas-turbine blade. In the stationary conditions, the parallel rib arrangement presents higher heat/mass transfer characteristics in the first pass, however, these characteristics disappear in the second pass due to the turning effects. In the rotating conditions, the cross rib present less heat/mass transfer discrepancy between the leading and the trailing surfaces in the first pass. In the second pass, the heat/mass transfer characteristics are much more complex due to the combined effects of the angled ribs, the sharp fuming and the rotation.

Heat/Mass Transfer and Pressure Drop in A Square Duct with V-Shaped Ribs (쐐기형 요철이 설치된 사각덕트에서의 열/물질전달 및 압력강하 특성)

  • Choi, Chung;Rhee, Dong-Ho;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.11
    • /
    • pp.1542-1551
    • /
    • 2002
  • The present study investigates the convective heat/mass transfer characteristics and pressure drop inside the rib-roughened cooling passage of gas turbine blades. The internal cooling passage is simulated using a square duct with h- and V-shaped rectangular ribs which have a 60。attack angle. A naphthalene sublimation technique is employed to determine the detailed local heat/mass transfer coefficients using the heat and mass transfer analogy. The ribs disturb the main flow resulting in the recirculation and secondary flows near the ribbed wail. The secondary flow patterns and the local heat transfer in the duct are changed significantly according to the rib orientation. A square duct with ∧ - and V-shaped ribs have two pairs of secondary flow due to the rib arrangement. Therefore, the average heat/mass transfer coefficients and pressure drop of ∧ - and V-shaped ribs are higher than those of the continuous ribs with 90$^{\circ}$ and 60$^{\circ}$attack angles. The ∧-shaped ribs have higher heat/mass transfer coefficients than the V-shaped ribs, and the uniformity of heat/mass transfer coefficient are increased with the discrete ribs due to the flow leakage and acceleration near the surface.

Heat/Mass Transfer and Pressure Drop of Square Duct with V-shape Ribs (쐐기형 요철이 설치된 사각덕트에서의 열전달 및 압력강하 특성)

  • Choi, Chung;Rhee, Dong-Ho;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.280-287
    • /
    • 2001
  • The present study investigates convective heat/mass transfer and flow characteristics inside the rib-roughened cooling passage of the gas turbine blades. A square duct with rectangular ribs is used and $\wedge-$ and V-shape ribs with $60^{\circ}$ attack angle are installed on the test plate surfaces. Naphthalene sublimation technique is employed to determine the detailed local heat transfer coefficients using the heat and mass transfer analogy. The ribs disturb the main flow resulting in the recirculation and secondary flows near the ribbed wall and the vortices near the side-wall. The local heat transfer and the secondary flow in the duct are changed largely according to the rib orientation. A square duct with $\wedge$ and V-shape ribs has two pairs of secondary flow because of the rib arrangement. So, the duct has complex heat/mass transfer distribution. The average heat/mass transfer coefficient and pressure drop of $\wedge-$ and V-shape ribs are higher than those with $90^{\circ}$ and $60^{\circ}$ attack angles. The average heat/mass transfer coefficient on the $\wedge-shape$ ribs is higher than that on the V-shape ribs. Also, the uniformity of heat/mass transfer coefficient on discrete ribs is higher than that on continuous rib.

  • PDF

Characteristics of Heat/Mass Transfer and Pressure Drop in a Square Duct with Compound-Angled Rib Turbulaters (복합각도 요철을 가지는 사각 덕트 내의 열전달 및 압력강하 특성)

  • Choi, Chung;Rhee, Dong Ho;Cho, Hyung Hee
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.325-333
    • /
    • 2001
  • The present study investigates convective heat/mass transfer and flow characteristics inside the cooling passage of the gas-turbine blades. It is important to increase not only the heat transfer rates but also the uniformity of heat transfer in the cooling passage. The square duct has compound-angled ribs with $60^{\circ},\;70^{\circ}$ and $90^{\circ}$ attack angles, which are installed on the test plate surfaces. a naphthalene sublimation technique is employed to determine the detailed local heat transfer coefficients using the heat and mass transfer analogy. The ribs disturb the main flow resulting in the recirculation and secondary flows near the ribbed wall and the vertices near the side-wall. The local heat transfer and the secondary flow in the duct are changed largely according to the rib orientation. Therefore, geometry and arrangement of the ribs are important fur the advantageous cooling performance. The angled ribs increase the heat transfer discrepancy between the wall and center regions because of the interaction of the secondary flows. The average heat/mass transfer coefficient and pressure drop of the ribs with the $60^{\circ}$ $-90^{\circ}$ compound-angle are higher than those with the $60^{\circ}$ attack angle. Also, the thermal efficiency of the compound-angled rib is higher than that with the $60^{\circ}$ attack angle. The uniformity of heat/mass transfer coefficient on the cross ribs may is higher than that on the parallel ribs array.

  • PDF

Effects of Rotation Speed on Heat Transfer and Flow in a Coolant Passage with Turning Region ( I ) - Cross Ribbed Duct - (곡관부를 가지는 내부 냉각유로에서 회전수 변화에 따른 열전달 및 유동 특성 ( I ) - 엇갈린 요철배열 덕트 -)

  • Kim Kyung Min;Kim Yun Young;Rhee Dong Ho;Cho Hyung Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.6 s.237
    • /
    • pp.737-746
    • /
    • 2005
  • The present study investigates heat/mass transfer and flow characteristics in a ribbed rotating passage with turning region. The duct has an aspect ratio (W/H) of 0.5 and a hydraulic diameter ($D_h$) of 26.67 mm. Rib turbulators are attached in the cross arrangement on the leading and trailing surfaces of the passage. The ribs have a rectangular cross section of $2\;mm\;(e){\times}\;mm\;(w)$ and an attack angle of $70^{\circ}$. The pitch-to-rib height ratio (p/e) is 7.5, and the rib height-to-hydraulic diameter ratio ($e/D_h$) is 0.075. The rotation number ranges from 0.0 to 0.20 while the Reynolds number is constant at 10,000. To verify the heat/mass transfer augmentation, internal flow structures are calculated for the same conditions using a commercial code FLUENT 6.1. The heat transfer data of the smooth duct for various Ro numbers agree well with not only the McAdams correlation but also the previous studies. The cross-rib turbulators significantly enhance heat/mass transfer in the passage by disturbing the main flow near the surfaces and generating one asymmetric cell of secondary flow skewing along the ribs. Because the secondary flow is induced in the first-pass and turning region, heat/mass transfer discrepancy is observed in the second-pass even for the stationary case. When the passage rotates, heat/mass transfer and flow phenomena change. Especially, the effect of rotation is more dominant than the effect of the ribs at the higher rotation number in the upstream of the second-pass.

Heat Transfer in Rotating Duct with $70^{\circ}$ Angled Ribs (회전하는 덕트내 설치된 $70^{\circ}$ 경사요철의 열전달 특성)

  • Choi, Chung;Lee, Sei Young;Won, Jung Ho;Cho, Hyung Hee;Park, Byung kyu
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.3 s.12
    • /
    • pp.7-13
    • /
    • 2001
  • The present study investigates convective heat/mass transfer and flow characteristics inside a cooling passage of rotating gas-turbine blades. The rotating duct has staggered ribs with $70^{\circ}$ attack angle, which are attached on leading and trailing surfaces. Naphthalene sublimation technique is employed to determine detailed local heat transfer coefficients using the heat and mass transfer analogy. Additional numerical calculations are conducted to analyze the flow patterns in the cooling passage. The present experiments employ two-surface heating conditions in the rotating duct because the exposed surfaces to hot gas stream are pressure and suction side surfaces in the middle passages of an actual gas-turbine blade. Secondary flows are generated by Coriolis and centrifugal forces in the spanwise and streamwise directions. The ribs attached on the walls disturb the mainflow resulting in recirculation and secondary flows near the ribbed wall. The local heat transfer and flow patterns in the passage are changed significantly according to rib configurations and duct rotation speeds. Therefore, the geometry and arrangement of the ribs are important for the advantageous cooling performance. The experimental results show that the ribs enhance the heat transfer more than $70\%$ from that of the smooth duct. The duct rotation generates the heat transfer discrepancy between the leading and trailing walls due to the secondary flows induced by the Coriolis force. The overal heat transfer pattern on the leading and trailing walls for the first and second passes are depended on the rotating speed, but the local heat transfer trend is affected mainly by the rib arrangements.

  • PDF

Numerical investigation on seismic performance of reinforced rib-double steel plate concrete combination shear wall

  • Longyun Zhou;Xiaohu Li;Xiaojun Li
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.78-91
    • /
    • 2024
  • Double steel plate concrete composite shear wall (SCSW) has been widely utilized in nuclear power plants and high-rise structures, and its shear connectors have a substantial impact on the seismic performance of SCSW. Therefore, in this study, the mechanical properties of SCSW with angle stiffening ribs as shear connections were parametrically examined for the reactor containment structure of nuclear power plants. The axial compression ratio of the SCSW, the spacing of the angle stiffening rib arrangement and the thickness of the angle stiffening rib steel plate were selected as the study parameters. Four finite element models were constructed by using the finite element program named ABAQUS to verify the experimental results of our team, and 13 finite element models were established to investigate the selected three parameters. Thus, the shear capacity, deformation capacity, ductility and energy dissipation capacity of SCSW were determined. The research results show that: compared with studs, using stiffened ribs as shear connectors can significantly enhance the mechanical properties of SCSW; When the axial compression ratio is 0.3-0.4, the seismic performance of SCSW can be maximized; with the lowering of stiffener gap, the shear bearing capacity is greatly enhanced, and when the gap is lowered to a specific distance, the shear bearing capacity has no major affect; in addition, increasing the thickness of stiffeners can significantly increase the shear capacity, ductility and energy dissipation capacity of SCSW. With the rise in the thickness of angle stiffening ribs, the improvement rate of each mechanical property index slows down. Finally, the shear bearing capacity calculation formula of SCSW with angle stiffening ribs as shear connectors is derived. The average error between the theoretical calculation formula and the finite element calculation results is 8% demonstrating that the theoretical formula is reliable. This study can provide reference for the design of SCSW.

A Study on Design for Casual Look Applying Painting Images of Henri Matisse (앙리 마티스 회화 이미지를 응용한 캐쥬얼 룩 디자인 연구)

  • Sim, Mi-Jung;Yu, Kum-Wha
    • The Research Journal of the Costume Culture
    • /
    • v.18 no.4
    • /
    • pp.612-625
    • /
    • 2010
  • People have more expectations for arts and design and accordingly, various artworks were combined with fashion to meet the consumer needs. As people live a decent life, the development of leisure activities and industry has a much effect on apparel. With this phenomenon, a free and active casual look is making progress centering around the practical apparel, pursuing diversified efficiency irrespective of a season and considering sensibility not formality. In this study, paintings of Henri Matisse were analyzed in every respect and were applied in apparel design with diverse color arrangement and a motif originating in the phenomenon of modern fashion design which leads to the integration of arts and design. Painting image and color of Henri Matisse were used. Sportive casual and cultural casual was used in design as well. Originality of its color in the paintings which were used an a motif is coming from Gauguin and Gogh. Henri had influenced to the next generation with pursuit of violent color. The following conclusions were drawn from this study. First, the color of Henri Matisse's paintings has a strong contrast effect. It combines notable violent color with a simple yet decorative motif. Therefore color from Matisse's paintings suit for apparel of marked individuality with its free color arrangement. Second, free and active image in Henri Matisse's paintings is easy to express efficiency and popularity. It accords with the feature of casual wear. Third, through adding a flowing curved line in Henri Matisse's paintings to materials and applying various colors putting into a curved line image to a rib section, a decorative effect which goes with the whole shape is obtained. This study presents possibility of emergence of unique design using free color arrangement and motif from the image of paintings and aims development of modern fashion design in accordance with modern fashion giving importance to the difference and sensibility by integration of modern garments and artworks.