• Title/Summary/Keyword: Rhodopseudomonas sp.

Search Result 15, Processing Time 0.022 seconds

Effects of Virious Plant Growth Promoting Rhizobacteria on the Growth of Hydroponically Grown Cucumber Plants in Rockwool and Cocopeat Culture (수종의 식물생장촉진 근권세균이 암면과 코코피트경 오이의 생장에 미치는 영향)

  • Cho, Ja-Yong;Chi, Yeon-Tae;Chung, Soon-Ju
    • Korean Journal of Organic Agriculture
    • /
    • v.7 no.1
    • /
    • pp.105-113
    • /
    • 1998
  • This study was conducted to clarify the effects of various rhizobacteria in the root zone in terms of Azospirillum sp., Rhodopseudomonas sp., Pseudomonas sp., fusant of Bacillus sp. and Corynebacterium glutamicum on the growth of hydroponically grown cucumber plants. Densities in bacterial cells of fusant of Bacillus sp. and Corynebacterium glutamicum at different substrates were in the order of cocopeat > rockwool > nutrient solutions at 4 days after bacterialization. Plant growth promoting effects of the various rhizobacteria on the growth of hydroponically grown cucumber plants were in the order of Azospirillum sp. > Rhodopseudomonas sp. $\ge$ fusant of Bacillus sp. and Corynebacterium glutamicum > Pseudomonas sp. > control.

  • PDF

Effects of Plant Growth Promoting Rhizobacteria on the Growth of Hydroponicelly Grown Tomato Plants, Lycopersicon esculentum Mill. cv. 'Seokwang' (植物生長促進 根圈細菌이 養液栽培 토마토의 生長에 미치는 影響)

  • Cho, Ja-Yong;Chang, Young-Sik;Chung, Soon-Ju
    • Korean Journal of Organic Agriculture
    • /
    • v.7 no.1
    • /
    • pp.129-135
    • /
    • 1998
  • This study was conducted to clarify the plant growth promoting effects of the various rhizobacteria on the growth of hydroponically grown tomatoes in rockwool, perlite and cocopeat cultures. Strains in terms of $Azospirilham\;sp.(4.5{\times}10^7cells/g),\;Rhodopseudomonas\;sp.(5.8{\times}10^5cells/g),\;Pseudomonas\;sp.(6.1{\times}10^6cells/g$), fusant of $Bacillus\;sp.\;and\;Corynebacterium\;glutamicum(9.1{\times}10^5cells/g$) was bacterialized into the root zone of tomatoes before sowing. Overall growth of tomato plants was promoted by bacterialization of the various rhizobacteria. Strains which showed the highest plan growth promoting effects of hydroponically grown tomatoes was Azospirillum sp., and optimum cultural substrates for the plant growth promotion by rhizobactera were in the order of cocopeat > perlite = rockwool cultures.

  • PDF

Isolation and identification of rhodopseudomonas sp. in Korea (한국산 rhodopseudomonas sp.의 분리 및 동정)

  • 오덕철;이현순
    • Korean Journal of Microbiology
    • /
    • v.13 no.1
    • /
    • pp.24-30
    • /
    • 1975
  • this work was designed to study the species belonging to Family Rhodospirillaceae in Korea. The species of Rhodopseudomonas palustris and R. gelatinosa were isolated and identified. The utilization of various substrates such as malate, succinate, citrate, pyruvate, propionate and acetate were tested with isolated KS 007 and KS o16. Though there were some differences according to nitrogen source in media it was thought that he intermediates of TCA cycle were comparatively good substrates, Also it was confirmed that isolated strains have the ability of nitrogen fixation.

  • PDF

The Relationship between Hydrogenase and Nitrogenase for Hydrogen Evolution in Rhodopseudomonas sp. KCTC 1437 (Rhodopseudomonas sp. KCTC 1437의 수소생성에 있어서의 Hydrogenase와 Nitrogenase의 관계)

  • Seol, Won-Gi;Kho, Yung-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.5
    • /
    • pp.385-389
    • /
    • 1986
  • Both hydrogenase and nitrogenase were found to be involved in hydrogen evolution independently in Rhodopseudomonas sp. KCTC 1437. The hydrogen formation in this bacterium was independent on light illumination and presence of N $H_4^{+}$ After establishment of conditions to measure the amount of hydrogen evolved by each of the enzymes in vivo, the several factors affecting on the hydrogen evolution, e.g. presence of gases ( $C_2$ $H_2$, $H_2$, $O_2$ or $N_2$), C/N ratio, were investigated, Hydrogenase was less inhibited than nitrogenase under $O_2$ and was active independent on the presence of $N_2$ or $C_2$ $H_2$ which were the strong inhibitor of nitrogenase. Besides, the hydrogenase activity was increased after incubation with $H_2$. And it was verified that this bacterium consume hydrogen and photoreduce $CO_2$ by hydrogenase. From above results, it is concluded that hydrogenase in Rhodopseudomonas sp. KCTC 1437 can produce hydrogen under more favorable condition that nitrogenase.e.

  • PDF

Evolution of Molecular Hydrogen from Glucose by Rhodopseudomonas sp. KCTC 1437 (Rhodopseudomonas sp. KCTC 1437에 의한 포도당으로부터의 수소 생성)

  • Woo, Seung-Jin;Lee, Jeong-Kug;Kwon, Tae-Jong;Kho, Yung-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.3
    • /
    • pp.257-263
    • /
    • 1985
  • Rhodopseudomonas sp. KCTC 1437 evolved molecular hydrogen efficiently under light illuminated anaerobic culture condition in the presence of organic acids and various sugars. especially glucose when low concentration of NH$_4$ + or L-glutamate was added to cultures. It was revealed that hydrogen formation from Rhodopseudomonas sp. KCTC 1437 was mediated by two different enzyme systems. Under the nitrogen limiting condition, hydrogen evolution from glucose was catalyzed by nitrogenase. For the nitrogenase activation in vivo, the precultured cells drown on limiting concentration of NH$_4$$^{+}$ as a sole nitrogen source showed more capacity of hydrogen evolution from glucose in the presence of L-glutamate than any other cells .frown on sufficient concentration of NH$_4$$^{+}$, L-glutamate, NH$_4$$^{+}$, or both of L-glutamate and $N_2$. A significant volume of molecular hydrogen was evolved from glucose even in the presence of excess NH$_4$$^{+}$ either in the light or dark anaerobic condition, presumably due to the mediation of hydrogen evolution by fromic hydrogenlyase.enlyase.

  • PDF

Purification of Cytochrome c-551 from Photosynthetic Bacterium Rhodopseudomonas Gelatinosa ATCC 17013 (광합성 세균인 Rhodopseudomonas gelatinosa ATCC 17013에서 Cytochrome c-551의 정체)

  • 강대길;최원기
    • Korean Journal of Microbiology
    • /
    • v.29 no.2
    • /
    • pp.92-96
    • /
    • 1991
  • The soluble cytochrome c-551 of photosynthetic bacterium, Rhodopseudomonas gelatinosa ATCC 17013 was purified through a sequene of four step chromatography including CM-cellulose ion-exchange chromatography, DEAE-Sephacel chromatography, Sephacryl s-200 gel permeation chromatography, and HPLC (SP-5PW). The molecular weight of the purified cytochrome c-551 was 14, 600 Da, and this protein shows the absorption peak at 551 nm, 522 nm, and 417 nm as the reduced form, and at 412 nm as the oxidized form. The cytochrome c-551 seems to be a substrate for the terminal oxidase in the electron transport chain.

  • PDF

Biosynthesis of Polyhydroxyalkanoates and 5-Aminolevulinic Acid by Rhodopseudomonas sp. KCTC1437 (Rhodopseudomonas sp. KCTC1437에서의 Polyhydroxyalkanoates와 5-Aminolevulinic Acid의 생합성)

  • 이영하;기형석;최강국;문명님;양영기
    • Korean Journal of Microbiology
    • /
    • v.38 no.2
    • /
    • pp.144-151
    • /
    • 2002
  • For elucidating the relationship between the biosynthetic pathways for polyhydroxyslkanoates (PHAs) and 5-aminolevulinic acid (ALA), culture conditions for the production of these two biomaterials by Rhodopseudomonas sp. KCTC 1437 were investigated. Of the carbon substrates tested, acetic acid was the best carbon source for cell growth and PHA biosynthesis. When succinic acid was added as a co-substrate into culture medium, cell growth and PHA production were greatly increased up to 2.5 g/ι and 73% of dry cell weight, respectively. The PHA obtained from the carbon substrates tested was homopolyester of 3-hydroxybutyrate, while valeric acid was only effective for the production of copolyester consisting of 3-hydroxybutyrate and 3-hydroxyvalerate. Anaerobic light culture condition was better for PHA production and cell growth than anaerobic dark or aerobic dark culture condition. The organism was capable of synthesizing ALA when glycine and succinic acid were added to the culture medium. ALA was produced to ca.400 mg/ι when levulinic acid, soccinic acid, and glycine were repeatedly added with a reductant (sodim thioglycolate). However, the presence of glycine, levulinic acid and sodium glycolate inhibited the cell growth and the conversion of carbon substrates to PHA. From these results it is apparent that the production yields of PHA and ALA could not be increased simultaneously because the optimal conditions for the production of PHA and ALA are opposed to each other.

Hydrogen Production by the Immobilized Cells of Rhodopseudomonas sp. E15-1 (Rhodopseudomonas sp. E15-1의 균체 고정화에 의한 수소생성)

  • Bae, Moo;Park, Sun-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.1
    • /
    • pp.74-80
    • /
    • 1989
  • For improvement of photobiological hydrogen production, Rhodopseudomonas El5-1, a photo-synthetic becterium capable of producing n high yield of hydrogen, was immobilized and conditions for hydrogen production by immobilized cells were examined. The optimum concentration for the combined matrix was obtained when sodium alginate was used at final concentration of 4%. The immobilized cells may reduce the inhibitory effects of nitrogen or oxygen. To minimize the diffusion resistance of the nutrients in alginate gel, the bend size less than 2 mm in diameter was desirable. The immobilized cells were also able to utilize n wide range of organic substrates for the production of hydrogen. The hydrogen producing activity of the immobilized cells was maintained for 20 days without loss of activity during semi-continuous operation of the reactor by feeding of new medium periodically and continuous production of hydrogen could be successfully performed for 30 days.

  • PDF

Characteristics of Immobilized Rhodopseudomonas sp. for Wastewater Treatment (폐수처리를 위한 고정화 Rhodopseudomonas sp.균의 특성)

  • 이범규;김상희;김중균
    • Journal of Life Science
    • /
    • v.9 no.3
    • /
    • pp.268-275
    • /
    • 1999
  • Rhodopseudomonas sp. was immobilized in three supports(agar, k-carrageenan, and PVA) in order to remove nitrate in wastewater coming from fish farm. Among them 3% agar was the most suitable support when denitrification rate and bead durability were tested. Optimum bead size was 4mm-diameter when the substrate transfer into the bead and shear stress for bead were considered, and optimum cell loading was 25mg dry $cells/cm^2$gel gel. Ethanol was the best as a carbon source, and optimum C:N ratio, temperature and pH were 1.5:1, $31^{\circ}C$,, and 6, respectively. Under these conditions the maximum denitrification rate in synthetic wastewater was $$345{\MU}{\ell};N_2/Cm^3 gel{\cdot}hr;and that in modified MYC medium was 450{\MU}{\ell}};N_2/Cm^3 gel{\cdot}hr $$.

  • PDF

The Assimilability of Glucose and Xylose in Rhodopseudomonas sp. K-7. (Rhodopseudomonas sp. K-7 의 당자화성)

  • Kim, Yong-Hyo;Bae, Moo
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.2
    • /
    • pp.169-172
    • /
    • 1985
  • The assimilability of glucose and xylose of Rhodopseudomonas K-7, whose hydrogen evolution has been characterized previously, was investigated under the anaerobic photosynthetic and the aerobic dark conditions. This organism is able to grow well in the medium containing glutamate and malate as organic substances under the anaerobic light condition. However, the substitution of glucose for malate retarded the growth rate, while the addition of glucose to the seed culture remarkably promoted the utilization of glucose added in the main culture. Optimal glucose concentration in the seed culture to induce glucose assimilability of the organism was around the concentration of 60 mM of glucose. Then, the seed culture grown in the medium containing 60 mM of glucose were inoculated in the medium containing 10, 20, 30, 60 and 100 mM of glucose respectively. The results were revealed that the consumable content of glucose was limited even though the high concentrations of glucose was contained in the medium. The consumption of considerable amount of glucose was observed when cultured under the aerobic dark conditions than the anaerobic illuminated conditions.

  • PDF