• Title/Summary/Keyword: Rhodococcus equi

Search Result 13, Processing Time 0.017 seconds

Characterization of Pseudomonas sp. NIBR-H-19, an Antimicrobial Secondary Metabolite Producer Isolated from the Gut of Korean Native Sea Roach, Ligia exotica

  • Sungmin Hwang;Jun Hyeok Yang;Ho Seok Sim;Sung Ho Choi;Byounghee Lee;Woo Young Bang;Ki Hwan Moon
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.11
    • /
    • pp.1416-1426
    • /
    • 2022
  • The need to discover new types of antimicrobial agents has grown since the emergence of antibiotic-resistant pathogens that threaten human health. The world's oceans, comprising complex niches of biodiversity, are a promising environment from which to extract new antibiotics-like compounds. In this study, we newly isolated Pseudomonas sp. NIBR-H-19 from the gut of the sea roach Ligia exotica and present both phenotypes and genomic information consisting of 6,184,379 bp in a single chromosome possessing a total of 5,644 protein-coding genes. Genomic analysis of the isolated species revealed that numerous genes involved in antimicrobial secondary metabolites are predicted throughout the whole genome. Moreover, our analysis showed that among twenty-five pathogenic bacteria, the growth of three pathogens, including Staphylococcus aureus, Streptococcus hominis and Rhodococcus equi, was significantly inhibited by the culture of Pseudomonas sp. NIBR-H-19. The characterization of marine microorganisms with biochemical assays and genomics tools will help uncover the biosynthesis and action mechanism of antimicrobial metabolites for development as antagonistic probiotics against fish pathogens in an aquatic culture system.

Specific detection of Salmonella serogroup D1 by polymerase chain reaction(PCR) for sefA gene (SefA 유전자 PCR에 의한 Salmonella serogroup D1의 특이적 검출)

  • Jun, Moo-hyung;Kim, Tae-joong;Chang, Kyung-soo;Kang, Kyong-im;Kim, Kui-hyun;Kim, Ki-seok;Yoo, Sang-sik;Kim, Hyun-soo;Shin, Kwang-soon;Kim, Chul-joong
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.3
    • /
    • pp.523-530
    • /
    • 1999
  • Sal enteritidis thin fimbriae, SEF14, were found to be restricted to the predominantly poultry-associated members of the Salmonella serogroup D1 that are considered as the important pathogens in poultry industry. SefA together with sefB and sefC encode the proteins involved in SEF14 biosynthesis. In order to develop the rapid and specific detection methods for Salmonella serogroup D1, a PCR technique for the amplification of sefA gene was established, and its specificity and sensitivity were investigated with various microorganisms. The bacterial genomic DNA was extracted by colony-picking and rapid boiled-lysate technique. In comparison of Sef I and Sef II primers used in the PCR, Sef I primer for sefA gene of 513bp showed higher specificity than that of Sef II. The established PCR was as sensitive as to detect 1pg of Sal enteritidis DNA. When 73 strains in 28 genera including the reference strains and the field isolates of various Salmonella serotypes, Bacillus subtilis, Bordetella bronchisepdca, E coli, Listeria spp., Micrococcus luteus, Rhodococcus equi, Staphylococcus spp., Streptococcus spp., Vibrio parahemolyticus, Yersinia spp. were studied, the established PCR yielded specifically positive results with only Salmonella serogroup D1. The results suggested that the PCR for sefA gene could be a potential candidate among the specific detection methods for Salmonella serogroup D1.

  • PDF