• 제목/요약/키워드: Rhodamine

검색결과 365건 처리시간 0.03초

Hydrophobic Interaction between Rhodamine 6G and Tetraphenylborate Anions

  • Lee, Beom-Gyu;Jung, Rae-Seok;Kim, Kang-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제10권2호
    • /
    • pp.158-161
    • /
    • 1989
  • The hydrophobic interaction occurring between rhodamine 6G and tetraphenylborate anions has been investigated with surfactants by absorption and fluorescence studies. In the order of tetraphenylborate, tetrakis(4-fluorophenyl)borate, and tetrakis[3,5-bis(trifluoromethyl)phenyl]borate the hydrophobicity is found to be increased.

$SnO_2$광전기화학 셀에서 Rhodamine B에 의한 광전류 (Photocurrents in the $SnO_2$ Photoelectrochemical Cell Sensitized by Rhodamine B)

  • 민현진;김기범;유정아;김강진
    • 대한화학회지
    • /
    • 제37권2호
    • /
    • pp.213-219
    • /
    • 1993
  • 들뜬 rhodamine B로부터 박막반도체 $SnO_2$의 전도띠로 주입되는 광전류를 여러 가지의 초감응체가 존재하는 용액에서 시간에 따라 조사하였다. ascorbic acid를 초감응체로 쓰면 그것의 농도, 용액의 pH, 그리고 $SnO_2$에 걸어주는 전위 등이 증가함에 따라 광전류가 대체로 증가하였으나, 전위가 노팡짐에 따라 암전류도 증가하였다. 반면에 KI를 초감응제로 사용하면 낮지만 비교적 안정한 전류를 보여주었다. 용매효과를 포함하여 이들 광감응전류를 증가시키는 원인을 규명해 보았다.

  • PDF

로다민 기반 염료감응형 태양전지의 제조 및 특성 분석 (Fabrication and Characterization of Dye-Sensitized Solar Cells Based on Rhodamine Dyes)

  • 최강훈;정혜인;안병관
    • 한국전기전자재료학회논문지
    • /
    • 제28권11호
    • /
    • pp.731-736
    • /
    • 2015
  • Rhodamine B (RhB) was utilized as a dye sensitizer for dye-sensitized solar cells (DSSCs) and its photovoltaic property was examined under the illumination of AM 1.5 G, $100mWcm^{-2}$. DSSCs based on RhB exhibited typical photovoltaic properties with an open-circuit voltage ($V_{OC}$) of 0.34 V, a short-circuit current ($J_{SC}$) of $1.55mA{\cdot}cm^{-2}$, a fill factor (FF) of 50%, and a conversion efficiency (PCE) of 0.26%. In order to further improve the photovoltaic properties of RhB-based DSSCs, the effect of (i) incorporating a strong electron-donating NCS unit into the RhB molecular backbone, (ii) combining a bis-negatively charged zinc complex anion ($Zn-dmit_2$, dmit=di-mercapto-dithiol-thione) with the amine cation of RhB, (iii) co-adsorbing RhB dyes with chenodeoxycholic acid (CDCA) molecules onto porous $TiO_2$ electrodes, was investigated and discussed.

Rhodamine derivative synthesis: dual-detectable chemosensor

  • 손영아;김형주;박준민;이아름;이준희;이도현
    • 한국염색가공학회:학술대회논문집
    • /
    • 한국염색가공학회 2012년도 제46차 학술발표회
    • /
    • pp.29-29
    • /
    • 2012
  • Rhodamine chromophore/fluorophore have been attracted to many researchers due to its excellent photophysical properties. In this study, we have designed and synthesized a strong emissive fluorescent dye chemosensor for toxic elements. A rhodamine-based sensor was prepared by incorporation the rhodamine fluorophore and several functional host groups with high affinity to hazardous metal and anion. This sensor shows a high selectivity and an excellent sensitivity and is a dual-responsive colorimetric and fluorescent metal/anion-specific sensor. In addition, the 1:1 binding mode was proposed based on Job's plot method. Finally, computational calculation was simulated and calculated to approach for HOMO/LUMO of this dye chemosensor.

  • PDF

Removal of Rhodamine Dye from Water Using Erbium Oxide Nanoparticles

  • Luaibi, Hasan M.;Al-Taweel, Saja S.;Gaaz, Tayser Sumer;Kadhum, Abdul Amir H.;Takriff, Mohd S.;Al-Amiery, Ahmed A.
    • 한국재료학회지
    • /
    • 제29권12호
    • /
    • pp.747-752
    • /
    • 2019
  • Environmental pollution remains a considerable health risk source all over the world; however, hazards are usually higher in developing countries. Iraq has long been suffering from the problem of pollution and how to treat pollution. Photocatalytic degradation has turned out to be most productive process for dye degradation. In this investigation, Rhodamine B (RhB), dye has been selected for degradation under visible light illumination. To address this issue, we fabricate erbium trioxide nanoparticles (Er2O3/NPs). Erbium trioxide nanoparticles are prepared and utilized for photo-catalytic degradation. The characterization of Er2O3/NPs is described and confirmed by utilizing of XRD (X-ray diffraction) and SEM (Scanning Electron Microscopy). The average size of Er2O3 nanoparticles is observed to be 16.00 nm. Er2O3/NPs is investigated for its ability of photo-catalytic degradation through certain selected parameters such as concentration and time. The methodological results show that the synthesized Er2O3/NPs is a good photo-catalytic for Rhodamine degradation.

3차원 전극을 사용한 Rhodamine B의 전기분해에 미치는 운전인자의 영향 (Effect of Operating Parameters on Electrochemical Degradation of Rhodamine B by Three-dimensional Electrode)

  • 김동석;박영식
    • 한국환경보건학회지
    • /
    • 제35권4호
    • /
    • pp.295-303
    • /
    • 2009
  • A simulated wastewater containing the dye Rhodamine B (RhB) was electrolytically treated using a three-dimensional electrode reactor equipped with granular activated carbon (GAC) as particle electrode. The effect of type of packing material (GAC, ACF, Nonwoven fabric fiber coated with activated carbon), amounts of GAC packing (25-100 g), current (0.5-3 A) and electrolyte concentration (0.5-3 g/l) was evaluated. Experimental results showed that performance for RhB decolorization of the 3 three-dimensional electrodes lie in: GAC > Nonwoven fabric fiber > ACF. When considered RhB decolorization, oxidants concentration and electric power, optimum GAC dosage was 50 g. Generated concentration of 3 oxidants ($ClO_2$, free Cl, $H_2O_2$) was increased with increase of applied current, however optimum current for RhB degradation was 2.5 A. The oxidants concentration was increased with increase of NaCl concentration and optimum NaCl dosage for RhB degradation was 1.5 g/l.

추적자시험에 의한 폐기물매립장 침출수 누출조사 (Investigation of Leachate Leakage in Waste Landfill by Tracer Test)

  • 이광열;이영준;장삼식
    • 한국지반공학회논문집
    • /
    • 제20권4호
    • /
    • pp.49-56
    • /
    • 2004
  • 본 연구에서는 추적자시험을 이용하여 매립종료된 폐기물매립장에서 꿰뚫림하중에 의해 파손된 차수재를 통한 침출수의 누출 여부를 조사하였다. 추적자시험은 자연구배형식을 채택하였으며, 추적자로는 iodide and Rhodamine WT를 사용하였다. 이 두 추적자는 침출수의 화학적 성분과 반응성을 충분히 고려하여 선정하였다 시험에서는 매립장 전체를 통하여 5개의 주입정과 14개의 관측공을 설치하여 운영하였다. 본 연구의 결과에 의하면, Iodide and Rhodamine WT 추적자는 매립장 침출수 누출조사에 적용 가능하며 효과적임을 확인하였으며, 다량의 침출수가 우수 관로와 우수관로의 외측 벽면을 통하여 누출되었던 것으로 추정된다.

수용액 환경에서 수은 측정을 위한 로다민 기반의 광섬유 센서 개발 (Development of Rhodamine-Based Fiber Optic Sensor for Detection of Mercury in Aqueous Environments)

  • 이애리;김용일;김범규;박병기
    • 센서학회지
    • /
    • 제23권3호
    • /
    • pp.173-177
    • /
    • 2014
  • A Rhodamine-based fiber-optic sensor has been developed to detect mercury ions in aqueous environments. The fiber-optic sensor was composed of a mercury-sensing thin film, plastic optical fibers, and a spectrometer. The mercury-sensing thin film with the synthesized Rhodamine derivatives was fabricated with Sol-Gel process. A light emitted by a light source is guided by plastic optical fibers into the thin film in an aqueous solution and a reflected light is analyzed with the spectrometer. The experiment exhibits that an absorbance in the thin film is increased as mercury concentration is increased in the solution and the absorbance by mercury is higher than that by other heavy metals. The fiber-optic sensor exhibits high chromogenic phenomenon of mercury ions among various heavy metals and the correlation between absorbance and mercury concentration in the aqueous environments.

A New Rhodamine B Derivative As a Colorimetric Chemosensor for Recognition of Copper(II) Ion

  • Tang, Lijun;Li, Fangfang;Liu, Minghui;Nandhakumar, Raju
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권11호
    • /
    • pp.3212-3216
    • /
    • 2010
  • A new rhodamine-based sensor 1 was designed and synthesized by incorporating rhodamine B and benzimidazole moieties. Sensor 1 exhibits high selectivity and sensitivity to $Cu^{2+}$ in $CH_3CN$-water solution (HEPES buffer, pH = 7.0) with an obvious color change from colorless to pink. Other metal ions such as $Hg^{2+}$, $Ag^+$, $Pb^{2+}$, $Sr^{2+}$, $Ba^{2+}$, $Cd^{2+}$, $Ni^{2+}$, $Co^{2+}$, $Fe^{2+}$, $Mn^{2+}$, $Cu^{2+}$, $Zn^{2+}$, $Ce^{3+}$, $Mg^{2+}$, $K^+$ and $Na^+$ had no such color change and have no significant influence on $Cu^{2+}$ recognition process. The interaction of $Cu^{2+}$ and sensor 1 was proven to adopt a 1:1 binding stoichiometry and the recognition process is reversible.