• Title/Summary/Keyword: Rho associated kinase

Search Result 34, Processing Time 0.02 seconds

Expression patterns of Rho-associated protein kinase signaling pathway-related genes in mouse submandibular glands

  • Kim, Ki-Chul;Roh, Sangho
    • International Journal of Oral Biology
    • /
    • v.46 no.2
    • /
    • pp.81-84
    • /
    • 2021
  • Salivary glands are exocrine glands that secrete saliva into the oral cavity, and secreted saliva plays essential roles in oral health. Therefore, maintaining the salivary glands in an intact state is required for proper production and secretion of saliva. To investigate a specific signaling pathway that might affect the maintenance of mouse submandibular gland (SMGs), RNA sequencing was performed. In SMGs, downregulated expression patterns of Rho-associated protein kinase (ROCK) signaling pathway-related genes, including Rhoa, Rhob, Rhoc, Rock1, and Rock2, were observed. Gene expression profiling analyses of these genes indicate that the ROCK signaling pathway is a potential signal for SMG maintenance.

Nicotine in High Concentration Causes Contraction of Isolated Strips of Rabbit Corpus Cavernosum

  • Nguyen, Hoai Bac;Lee, Shin Young;Park, Soo Hyun;Han, Jun Hyun;Lee, Moo Yeol;Myung, Soon Chul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.3
    • /
    • pp.257-262
    • /
    • 2015
  • It is well known that cigarette smoke can cause erectile dysfunction by affecting the penile vascular system. However, the exact effects of nicotine on the corpus cavernosum remains poorly understood. Nicotine has been reported to cause relaxation of the corpus cavernosum; it has also been reported to cause both contraction and relaxation. Therefore, high concentrations of nicotine were studied in strips from the rabbit corpus cavernosum to better understand its effects. The proximal penile corpus cavernosal strips from male rabbits weighing approximately 4 kg were used in organ bath studies. Nicotine in high concentrations ($10^{-5}{\sim}10^{-4}M$) produced dose-dependent contractions of the corpus cavernosal strips. The incubation with $10^{-5}M$ hexamethonium (nicotinic receptor antagonist) significantly inhibited the magnitude of the nicotine associated contractions. The nicotine-induced contractions were not only significantly inhibited by pretreatment with $10^{-5}M$ indomethacin (nonspecific cyclooxygenase inhibitor) and with $10^{-6}M$ NS-398 (selective cyclooxygenase inhibitor), but also with $10^{-6}M$ Y-27632 (Rho kinase inhibitor). Ozagrel (thromboxane $A_2$ synthase inhibitor) and SQ-29548 (highly selective TP receptor antagonist) pretreatments significantly reduced the nicotine-induced contractile amplitude of the strips. High concentrations of nicotine caused contraction of isolated rabbit corpus cavernosal strips. This contraction appeared to be mediated by activation of nicotinic receptors. Rho-kinase and cyclooxygenase pathways, especially cyclooxygenase-2 and thromboxane $A_2$, might play a pivotal role in the mechanism associated with nicotine-induced contraction of the rabbit corpus cavernosum.

Vasorelaxation Effect of Butanol Fraction of Crataegi Fructus due to LC20 dephosphorylation via increase of Myosin Phosphophatase activity (산사 Butaol 분획이 PGF2$\alpha$-유도 혈관평활근수축의 억제에 미치는 신호전달 연구)

  • Liang Liou Jia;Choi Ho Jeong;Kim Gil-Whon;Shin Heung Mook
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.2
    • /
    • pp.461-466
    • /
    • 2003
  • The primary mechanism of smooth muscle contraction is phosphorylation of the 20 kDa myosin light chains(LC20) by a myosin light chain kinase(MLCK). Relaxation, then, is generally the result of dephosphorylation of LC20 by myosin phosphatase(MP). Changes in MP activity is one of the important mechanisms in the regulation of Ca2+-sensitivity. Inhibition of MP activity is linked to an increase in phosphorylated myosin light chain(MLC) without an increase in [Ca/sup 2+/]i-levels. It is now generally accepted that Rho-kinase phosphorylates 130 kDa regulatory and myosin binding subunits(M130, MYPT) of MP, which results in an inhibition of MP activity. In addition Rho-kinase can also directly phosphorylate MLC. In the present study, LC20 phosphorylation and MP subunits translocation to the cell membrane were investigated in freshly isolated ferret portal vein smooth muscle single cells treated with PGF2α. We also examined the effect of Y27632(10-5mol/L), Rho-kinase inhibitor, in the MP subunits localization to compare with butanol fraction of Fructus Crataegi in its effect. Butanol fraction of Fructus Crataegi(BFFC; 1㎎/㎖) was more effective in PGF2α induced contraction than those of phenylephrine in its vasodilation effect. It significantly(P<0.05) dephosphorylated the LC20 at time indicated. In addition, the dissociation of subunits are inhibited by BFCF treatment. The results indicate that, in the smooth muscle cells, the relaxation effect of BFFC is associated with increase of MP activity based on inhibition of dissociation of the catalytic and targeting subunits of the phosphatase, and thus decrease the sensitivity of LC20 phosphorylation for Ca/sup 2+/.

Depletion of Janus kinase-2 promotes neuronal differentiation of mouse embryonic stem cells

  • Oh, Mihee;Kim, Sun Young;Byun, Jeong-Su;Lee, Seonha;Kim, Won-Kon;Oh, Kyoung-Jin;Lee, Eun-Woo;Bae, Kwang-Hee;Lee, Sang Chul;Han, Baek-Soo
    • BMB Reports
    • /
    • v.54 no.12
    • /
    • pp.626-631
    • /
    • 2021
  • Janus kinase 2 (JAK2), a non-receptor tyrosine kinase, is a critical component of cytokine and growth factor signaling pathways regulating hematopoietic cell proliferation. JAK2 mutations are associated with multiple myeloproliferative neoplasms. Although physiological and pathological functions of JAK2 in hematopoietic tissues are well-known, such functions of JAK2 in the nervous system are not well studied yet. The present study demonstrated that JAK2 could negatively regulate neuronal differentiation of mouse embryonic stem cells (ESCs). Depletion of JAK2 stimulated neuronal differentiation of mouse ESCs and activated glycogen synthase kinase 3β, Fyn, and cyclin-dependent kinase 5. Knockdown of JAK2 resulted in accumulation of GTP-bound Rac1, a Rho GTPase implicated in the regulation of cytoskeletal dynamics. These findings suggest that JAK2 might negatively regulate neuronal differentiation by suppressing the GSK-3β/Fyn/CDK5 signaling pathway responsible for morphological maturation.

Therapeutic potential of targeting kinase inhibition in patients with idiopathic pulmonary fibrosis

  • Kim, Suji;Lim, Jae Hyang;Woo, Chang-Hoon
    • Journal of Yeungnam Medical Science
    • /
    • v.37 no.4
    • /
    • pp.269-276
    • /
    • 2020
  • Fibrosis is characterized by excessive accumulation of extracellular matrix components. The fibrotic process ultimately leads to organ dysfunction and failure in chronic inflammatory and metabolic diseases such as pulmonary fibrosis, advanced kidney disease, and liver cirrhosis. Idiopathic pulmonary fibrosis (IPF) is a common form of progressive and chronic interstitial lung disease of unknown etiology. Pathophysiologically, the parenchyma of the lung alveoli, interstitium, and capillary endothelium becomes scarred and stiff, which makes breathing difficult because the lungs have to work harder to transfer oxygen and carbon dioxide between the alveolar space and bloodstream. The transforming growth factor beta (TGF-β) signaling pathway plays an important role in the pathogenesis of pulmonary fibrosis and scarring of the lung tissue. Recent clinical trials focused on the development of pharmacological agents that either directly or indirectly target kinases for the treatment of IPF. Therefore, to develop therapeutic targets for pulmonary fibrosis, it is essential to understand the key factors involved in the pathogenesis of pulmonary fibrosis and the underlying signaling pathway. The objective of this review is to discuss the role of kinase signaling cascades in the regulation of either TGF-β-dependent or other signaling pathways, including Rho-associated coiled-coil kinase, c-jun N-terminal kinase, extracellular signal-regulated kinase 5, and p90 ribosomal S6 kinase pathways, and potential therapeutic targets in IPF.

A Comparison of ROCK Inhibitors on Human Bone Marrow-Derived Mesenchymal Stem Cell Differentiation into Neuron-Like Cells

  • Lee, Hyun-Sun;Kim, Kwang-Sei;O, Eun-Ju;Joe, Young-Ae
    • Biomolecules & Therapeutics
    • /
    • v.18 no.4
    • /
    • pp.386-395
    • /
    • 2010
  • Bone marrow-derived mesenchymal stem cells (BM-MSC) are a multipotent cell population that can differentiate into neuron-like cells. Previously it has been reported that murine BM-MSC can differentiate into neuron-like cells by co-treatment with a Rho-associated kinase (ROCK) inhibitor -Y27632 and $CoCl_2$. In this study, we compared several ROCK inhibitors for the ability to induce human BM-MSCs to differentiate into neuron-like cells in the presence of $CoCl_2$. Y27632 with high specificity for ROCK at 1-30 ${\mu}M$ was best at inducing neuronal differentiation of MSCs. Compared to HA1077 and H1152, which also effectively induced morphological change into neuron-like cells, Y27632 showed less toxicity even at 100 ${\mu}M$, and resulted in longer multiple branching processes at a wide range of concentrations at 6 h and 72 h post-induction. H89, however, which has less specificity by inhibition of protein kinase A, S6 kinase 1 and MSK1 with similar or greater potency, was less effective at inducing neuronal differentiation of MSCs. Simvastatin, which can inhibit Rho, Ras, and Rac by blocking the synthesis of isoprenoid intermediates, showed little activity for inducing morphological changes of MSCs into neuron-like cells. Accordingly, the expression patterns for neuronal cell markers,including ${\beta}$-tubulin III, neuron-specific enolase, neurofilament, and microtubule-associated protein, were consistent with the pattern of the morphological changes. The data suggest that the ROCK inhibitors with higher specificity are more effective at inducing neuronal differentiation of MSCs.

Rhodanthpyrone A and B play an anti-inflammatory role by suppressing the nuclear factor-κB pathway in macrophages

  • Kim, Kyeong Su;Han, Chang Yeob;Han, Young Taek;Bae, Eun Ju
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.6
    • /
    • pp.493-499
    • /
    • 2019
  • Macrophage-associated inflammation is crucial for the pathogenesis of diverse diseases including metabolic disorders. Rhodanthpyrone (Rho) is an active component of Gentiana rhodantha, which has been used in traditional Chinese medicine to treat inflammation. Although synthesis procedures of RhoA and RhoB were reported, the biological effects of the specific compounds have never been explored. In this study, the anti-inflammatory activity and mechanisms of action of RhoA and RhoB were studied in lipopolysaccharide (LPS)-stimulated macrophages. Pretreatment with RhoA and RhoB decreased inducible nitric oxide synthase and cyclooxygenase-2 expressions in RAW 264.7 cells and in thioglycollate-elicited mouse peritoneal macrophages. In addition, it downregulated transcript levels of several inflammatory genes in LPS-stimulated RAW 264.7 cells, including inflammatory cytokines/chemokines (Tnfa, Il6, and Ccl2) and inflammatory mediators (Nos2 and Ptgs2). Macrophage chemotaxis was also inhibited by treatment with the compounds. Mechanistic studies revealed that RhoA and RhoB suppressed the nuclear factor $(NF)-{\kappa}B$ pathway, but not the canonical mitogen activated protein kinase pathway, in LPS-stimulated condition. Moreover, the inhibitory effect of RhoA and RhoB on inflammatory gene expressions was attenuated by treatment with an $NF-{\kappa}B$ inhibitor. Our findings suggest that RhoA and RhoB play an anti-inflammatory role at least in part by suppressing the $NF-{\kappa}B$ pathway during macrophage-mediated inflammation.

Rho-associated Kinase is Involved in Preimplantation Development and Embryonic Compaction in Pigs

  • Son, Myeong-Ju;Park, Jin-Mo;Min, Sung-Hun;Park, Hum-Dai;Koo, Deog-Bon
    • Journal of Embryo Transfer
    • /
    • v.25 no.2
    • /
    • pp.103-110
    • /
    • 2010
  • The first morphogenetic event of preimplantation development, compaction, was required efficient production of porcine embryos in vitro. Compaction of the porcine embryo, which takes place at post 4-cell stage, is dependent upon the adhesion molecule E-cadherin. The E-cadherin through ${\beta}$-catenin contributes to stable cell-cell adhesion. Rho-associated kinase (ROCK) signaling was found to support the integrity of E-cadherin based cell contacts. In this study, we traced the effects of ROCK-1 on early embryonic development and structural integrity of blastocysts in pigs. Then, in order to gain new insights into the process of compaction, we also examined whether ROCK-1 signaling is involved in the regulation of the compaction mediated by E-cadherin of cellular adhesion molecules. As a result, real-time RT-PCR analysis showed that the expression of ROCK-1 mRNA was presented throughout porcine preimplantation stages, but not expressed as consistent levels. Thus, we investigated the blastocyst formation of porcine embryos treated with LPA and Y27632. Blastocysts formation and their qualities in LPA treated group increased significantly compared to those in the Y27632-treated group (p < 0.05). Then, to determine whether ROCK-1 associates embryonic compaction, we explored the effect of activator and/or inhibitor of ROCK-1 on compaction of embryos in pigs. The rate of compacted morula in LPA treated group was increased compared to that in the Y27632-treated group (39.7 vs 12.0%). Furthermore, we investigated the localization and expression pattern of E-cadherin at 4-cell stage porcine embryos in both LPA- and Y27632-treated groups by immunocytochemical analysis and Western blot analysis. The expression of E-cadherin was increased in LPA-treated group compared to that in the Y27632-treated group. The localization of E-cadherin in LPA-treated group was enriched in part of blastomere contacts compared to that Y27632-treated group. ROCK-1 as a crucial mediator of embryo compaction may plays an important role in regulating compaction through E-cadherin of the cell adhesion during the porcine preimplantation embryo. We concluded that ROCK-1 gene may affect the developmental potential of porcine blastocysts through regulating embryonic compaction.

New Isolation Technique and Culture System for Clinical Applications of Human Amniotic Epithelial Stem Cells (인간태반양막유래 상피줄기세포의 임상적용을 위한 새로운 세포분리 및 배양 기술)

  • Woo, Sang-Kyu;Jo, Jung-Yoon;Shin, Il-Seob;Kang, Sung-Keun;Ra, Jeong-Chan
    • Development and Reproduction
    • /
    • v.13 no.4
    • /
    • pp.271-280
    • /
    • 2009
  • Human placenta is abundant source of adult stem cells. Especially, amniotic epithelial cells have stem cell characteristics, expressing surface markers normally present on embryonic stem cells and germ cells. However, culturing and expanding amniotic epithelial cells in vitro without feeder cells are difficult due to endogenous characteristics of epithelial cells. In the present study, amniotic epithelial cells are isolated and proliferated in several passages by applying dithiothreitol and a Rho-associated kinase inhibitor in culture media. The cultured amniotic epithelial cells showed the epithelial and stem cell characteristics. In conclusion, human placenta-derived amniotic epithelial stem cells can be a major source of stem cells for medical treatment of various diseases without any controversial issues.

  • PDF