• Title/Summary/Keyword: Rhizosphere bacteria

Search Result 202, Processing Time 0.028 seconds

Evaluation of Soil Microflora in Salt Accumulated Soils of Plastic Film House (염유집적(鹽類集積) 시설재배지(施設栽培地)의 토양미생물상(土壤微生物相) 평가(評價))

  • Kwon, Jang-Sik;Suh, Jang-Sun;Weon, Hang-Yeon;Shin, Jae-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.2
    • /
    • pp.204-210
    • /
    • 1998
  • The experiment was conducted to obtain the basic data required to characterize and improve rhizosphere environment of salt-accumulated greenhouse(SAG) soils by comparing the soil properties and the microbial flora of such soils to those of unprotected arable upland(UAU) soils. Soils were sampled from greenhouses and unprotected upland fields around the country. Microbial propulation, biomass C content and soil chemical properties were of interest. Population density of fluorescent Pseudomonas was high in UAU soils, while those of pathogenic Fusarium sp. and fluorescent Pseudomonas were low in SAG soils. With increasing soil organic matter(OM) content, the population densities of Bacillus sp., fluorescent Pseudomonas sp., Enterobacteriaceae, and microbial biomass C content increased. As soil electrical conductivity(EC) increased higher than $5.1dS\;m^{-1}$, the ratios of bacteria to fungi(B/F) and actinomycetes to fungi(A/F) and the population density of fluorescent Pseudomonas decreased remarkably. The soil pH was positively related to the population density of aerobic bacteria, while it was negatively related to that of fungi. The soil OM content was significantly correlated to the population densities of actinomycetes($r=0.226^*$). Bacillus sp.($r=0.334^{**}$), Enterobacteriaceae($r=0.276^*$), and the microbial biomass C content($R=0.439^{**}$). The population density of actinomycetes was also significantly correlated with soil exchangeable Ca($r=0.334^{**}$) and Mg($r=0.352^{**}$).

  • PDF

Characterization of Rhizobacteria Isolated from Family Solanaceae Plants in Dokdo Island (독도에 서식하는 가지과식물로부터 분리된 근권세균의 특성)

  • Ham, Mi-Seon;Park, Yu-Mi;Sung, Hye-Ri;Sumayo, Marilyn;Ryu, Choong-Min;Park, Seung-Hwan;Ghim, Sa-Youl
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.2
    • /
    • pp.110-117
    • /
    • 2009
  • To characterize plant root-associated bacteria in wild plant family Solanaceae, Solanum nigrum L. plants were collected in Dokdo island. Forty four strains of nitrogen-fixing or spore-forming bacteria were isolated from rhizosphere of Solanum nigrum L. plants. Among these, 19 strains were able to produce auxin. Thirteen strains of these produced siderophore as determined by color reaction on CAS-blue plate, 8 strains were able to solubilize phosphate. The 16S rDNA genes of the isolated bacteria were amplified and sequenced. Model plants, pepper and tobacco, were established in order to evaluate the bacterial capacities eliciting growth promotion and induced systemic resistance. The plants treated with strain KUDC1009 were more resistant and capable of growth-promotion than control plants when challenged by either Xanthomonas axonopodis pv. vesicatoria or Erwinia carotovora sub. carotovora strain SCC1. Rhizobacteria isolated from Dokdo island can promote growth of wild type Solanum nigrum L. under much environmental stresses.

Purification and Characterization of Chitinase from Antagonistic Bacteria Pseudomonas sp. 3098. (생물방제균 Pseudomonas sp. 3098이 생산하는 Chitinase의 정제 및 특성)

  • 이종태;김동환;도재호;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.6
    • /
    • pp.515-522
    • /
    • 1998
  • Plant root rotting fungi, Fusarium solani are suppressed their growth by the chitinase which is produced from the antagonistic soil bacteria. The chitinase producable antagonistic bacterium Pseudomonas sp. 3098 was selected as a powerful biocontrol agent of F. solani from ginseng rhizosphere. The antagonistic Pseudomonas sp. 3098 was able to produce a large amount of extracellular chitinase which is key enzyme in the decomposition of fusarial hypal walls. The chitinase was purified from cultural filtrate of Pseudomonas sp. 3098 by the procedure of ammonium sulfate precipitation, anion exchange chromatography, gel filtration on Bio-Gel P-100, and 1st and 2nd hydroxyapatite chromatography. The molecular mass of the purified enzyme was ca. 45 kDa on SDS-FAGE. The optimal pH and temperature for the activity of purified chitinase were 5.0 and 45$^{\circ}C$, respectively. The enzyme was stable in pH range of 5.0 to 9.0 up to 5$0^{\circ}C$ The enzyme was significantly inhibited by metal compounds such as FeCl$_2$, AgNO$_3$ and HgCl$_2$, and was slightly inhibited by p-CMB, iodoacetic acid, urea, 2,4-DNP and EDTA. The enzyme had ability of digestion on colloidal chitin and chitin from shrimp shell, but could not digest chitosan and chitin from crab shell. Km value of the enzyme was 0.11% on colloidal chitin, and the maximum hydrolysis rate of the enzyme was 34% on colloidal chitin.

  • PDF

The Relationships between the Microorganisms and the Red-Colored Phenomena of Ginseng (Panax ginseng C.A. Meyer) (인삼뿌리의 적변현상과 근권미생물)

  • 윤길영;양덕조
    • Journal of Ginseng Research
    • /
    • v.25 no.1
    • /
    • pp.53-58
    • /
    • 2001
  • To clarify a significant difference between red-colored phenomena (RCP) and microbes isolated from rhizosphere soil of healthy ginseng (HES) and red-colored ginseng (RCS), we have examined growth and cellulase activities of the microbes according to pH variation and iron status. The soil microbes could not grow at pH 3.0 on the YEB medium. The growth of bacterium isolated from RCG at pH from 5.0 to 9.0 showed small differences and the growth of bacterium HES was lower than that of others. The growth of bacteria from RCS and surface soil (SUS) at pH 5.0 were also lower than that of pH 7.0 and pH 9.0. However, the bacteria isolated from red-colored ginseng (RCG) and RCS are able to grow on the medium contained 2 mM Fe$\^$3+/ at pH 3.0. Furthermore, the growth of bacterium from RCG increased about two times in the medium contained iron at pH 7.0 compared with minus iron. The cellulase activity of isolated bacteria increased two times in the medium contained 2 mM Fe$\^$3+/ compared with minus iron. The activity of extra-cellular cellulase was higher by one hundred times than that of intracellular level. The cellulase activity of the bacterium from RCS at pH 5.0 was higher by two times than that of pH 7.0. Especially, intracellular activity of the bacterium from RCS on the medium contained 2mM Fe$\^$3+/ increased about six to seven times compared with control (minus iron). Also, extra-cellular activity increased about eleven to twelve times compared with control. These results indicate that the soil microbes seem to be related iron redoxidation by proton extrusion and with cell wall digestion by secreted cellulase.

  • PDF

Isolation, Identification and Antagonisms of Rhizospheric Antagonists to Cucumber Wilt Pathogen, Fusarium oxysporum f. sp. cucumerinum Owen (오이 덩굴쪼김병균에 대한 오이 근권길항미생물의 분리, 동정 및 길항작용)

  • Jee Hyeong Jin;Kim Hee Kyu
    • Korean Journal Plant Pathology
    • /
    • v.3 no.3
    • /
    • pp.187-197
    • /
    • 1987
  • Bacteria and fungi antagonistic to Fusarium oxysporum f. sp. cucumerinum Owen were effectively isolated with each of modified Triple Layer Agar (TLA) technique from rhizosphere soil where cucumber had been grown healthily in plastic film house. Three predominant bacterial isolates selected were identified as Pseudomonas fluorescens, and P. putida, Serratia sp. and three fungal isolates were Gliocladium sp. Trichoderma harzianum, and T. viride. Antagonistic bacteria inhibited $26-45\%$ of germination and $41-56\%$ of germ tube elongation of microconidia of F. oxysporum f. sp. cucumerinum on Water Agar (WA). P. fluorescens was the strongest inhibitor. Several my co parasitisms were observed on dual culture of WA between antagonistic fungi and F. oxysporum f. sp. cucumerinum such as coiling, penetration, overgrowing, and lysis. Mycelial lysis of the pathogen was the most severe at pH 4.6, followed by 3.6, 5.6 and 6.6 of the medium in decreasing order. At pH 6.6, mycelia of the pathogen were not conspicuously damaged, however, the antagonistic fungi formed abundant chlamydospores especially Gliocladium sp. T. harzianum revealed the most excellent antagonism in vitro.

  • PDF

Antagonistic Bacillus species as a biological control of ginseng root rot caused by Fusarium cf. incarnatum

  • Song, Minjae;Yun, Hye Young;Kim, Young Ho
    • Journal of Ginseng Research
    • /
    • v.38 no.2
    • /
    • pp.136-145
    • /
    • 2014
  • Background: This study aimed to develop a biocontrol system for ginseng root rot caused by Fusarium cf. incarnatum. Methods: In total, 392 bacteria isolated from ginseng roots and various soils were screened for their antifungal activity against the fungal pathogen, and a bacterial isolate (B2-5) was selected as a promising candidate for the biocontrol because of the strong antagonistic activity of the bacterial cell suspension and culture filtrate against pathogen. Results: The bacterial isolate B2-5 displayed an enhanced inhibitory activity against the pathogen mycelial growth with a temperature increase to $25^{\circ}C$, produced no pectinase (related to root rotting) an no critical rot symptoms at low [$10^6$ colony-forming units (CFU)/mL] and high ($10^8CFU/mL$) inoculum concentrations. In pot experiments, pretreatment with the bacterial isolate in the presumed optimal time for disease control reduced disease severity significantly with a higher control efficacy at an inoculum concentration of $10^6CFU/mL$ than at $10^8CFU/mL$. The establishment and colonization ability of the bacterial isolates on the ginseng rhizosphere appeared to be higher when both the bacterial isolate and the pathogen were coinoculated than when the bacterial isolate was inoculated alone, suggesting its target-oriented biocontrol activity against the pathogen. Scanning electron microscopy showed that the pathogen hyphae were twisted and shriveled by the bacterial treatment, which may be a symptom of direct damage by antifungal substances. Conclusion: All of these results suggest that the bacterial isolate has good potential as a microbial agent for the biocontrol of the ginseng root rot caused by F. cf. incarnatum.

Induction of systemic resistance in Panax ginseng against Phytophthora cactorum by native Bacillus amyloliquefaciens HK34

  • Lee, Byung Dae;Dutta, Swarnalee;Ryu, Hojin;Yoo, Sung-Je;Suh, Dong-Sang;Park, Kyungseok
    • Journal of Ginseng Research
    • /
    • v.39 no.3
    • /
    • pp.213-220
    • /
    • 2015
  • Background: Korean ginseng (Panax ginseng Meyer) is a perennial herb prone to various root diseases, with Phytophthora cactorum being considered one of the most dreaded pathogens. P. cactorum causes foliar blight and root rot. Although chemical pesticides are available for disease control, attention has been shifted to viable, eco-friendly, and cost-effective biological means such as plant growth-promoting rhizobacteria (PGPR) for control of diseases. Methods: Native Bacillus amyloliquefaciens strain HK34 was isolated from wild ginseng and assessed as a biological control agent for ginseng. Leaves from plants treated with HK34 were analyzed for induced systemic resistance (ISR) against P. cactorum in square plate assay. Treated plants were verified for differential expression of defense-related marker genes using quantitative reverse transcription polymerase chain reaction. Results: A total of 78 native rhizosphere bacilli from wild P. ginseng were isolated. One of the root-associated bacteria identified as B. amyloliquefaciens strain HK34 effectively induced resistance against P. cactorum when applied as soil drench once (99.1% disease control) and as a priming treatment two times in the early stages (83.9% disease control). A similar result was observed in the leaf samples of plants under field conditions, where the percentage of disease control was 85.6%. Significant upregulation of the genes PgPR10, PgPR5, and PgCAT in the leaves of plants treated with HK34 was observed against P. cactorum compared with untreated controls and only pathogen-treated plants. Conclusion: The results of this study indicate HK34 as a potential biocontrol agent eliciting ISR in ginseng against P. cactorum.

Complete Genome and Calcium Carbonate Precipitation of Alkaliphilic Bacillus sp. AK13 for Self-Healing Concrete

  • Jung, Yoonhee;Kim, Wonjae;Kim, Wook;Park, Woojun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.404-416
    • /
    • 2020
  • Bacteria that are resistant to high temperatures and alkaline environments are essential for the biological repair of damaged concrete. Alkaliphilic and halotolerant Bacillus sp. AK13 was isolated from the rhizosphere of Miscanthus sacchariflorus. Unlike other tested Bacillus species, the AK13 strain grows at pH 13 and withstands 11% (w/v) NaCl. Growth of the AK13 strain at elevated pH without urea promoted calcium carbonate (CaCO3) formation. Irregular vaterite-like CaCO3 minerals that were tightly attached to cells were observed using field-emission scanning electron microscopy. Energy-dispersive X-ray spectrometry, confocal laser scanning microscopy, and X-ray diffraction analyses confirmed the presence of CaCO3 around the cell. Isotope ration mass spectrometry analysis confirmed that the majority of CO32- ions in the CaCO3 were produced by cellular respiration rather than being derived from atmospheric carbon dioxide. The minerals produced from calcium acetate-added growth medium formed smaller crystals than those formed in calcium lactate-added medium. Strain AK13 appears to heal cracks on mortar specimens when applied as a pelletized spore powder. Alkaliphilic Bacillus sp. AK13 is a promising candidate for self-healing agents in concrete.

Control Effect of Stenotrophomonas maltophilia BW-13 strain to the lettuce Bottom rot

  • Park, Jong-Young;Kim, Hyun-Ju;Bak, Joung-Woo;Lee, Kwang-Youll;Jun, Ok-Ju;Lee, Jin-Woo;Jung, Soon-Je;Moon, Byung-Ju
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.103.1-103
    • /
    • 2003
  • An antagonistic bacteria, Stenotrophomonas maitophilia BW-13 strain which was effectively inhibited mycerial growth of Bottom rot pathogen, Rhizoctonia solani PY-1 strain was isolated from the rhizosphere of the lettuce in Uiryeong-Gun, Gyeongsangnam-Do from 2002 to 2003. For the biological control, the most suitable inoculum and its density of pathogen, PY-1 strain ware tested prior biological control test, For the pathogenicity test, A inoculum (wheat bran)sawdust+rice bran+PDB) showing disease incidence of 100% was selected as the most suitable inoculum, which showed more effective than B inoculum (sawdust+rice bran+DW) and mycelial disc. also, In selection of the amount of inoculum (40g, 50g, 60g, 70g, 80g), most suitable amount of inoculum of pathogen determined as 40g showing disease incidence of 80%. For the selection of effective microorganism to control bottom rot on lettuce, about 200 isolates were isolated from the diseased soil and lettuce leaves, and examined their antifungal activity to the pathogen on PDA. As the pots assay, BW-13 strain showed the highest control value as 90%, and followed by R-13 and R-26 strain as 80% and 60%, respectively. Selected BW-13 isolates identified as 5. maltophilia (GeneBank accession no. AJ293473.1, 99%) by 16S rRNA sequencing. This is the first report on the biological control using by S. maltophilia to the bottom rot pathogen, Rhizoctonia solani PY-1 strain.

  • PDF

Mathematical analysis on the effect of mineral nutrients on the growth rate of Chlorella (Chlorella의 성장에 미치는 무기영양의 영향에 관한 반응속도론적 연구)

  • 장남기
    • Korean Journal of Microbiology
    • /
    • v.7 no.3
    • /
    • pp.107-114
    • /
    • 1969
  • Relationship of soil properties and seasonal variation on microbilogical population to-continuous culture and first-time culture of ginseng was investigated by bimonthly from May 1976 to January 1977. pH and P contents of 2 years continuous culture of soil were higher than other culture plot of soil, and contraty to the above, 2 years first-time culture of ginseng soil was conplot of soil, and contraty to the above, 2 years first-time culture of ginseng soil was contained more potassium contents than other culture plot of soil. In microbiological fluctuation with seasonr in various soil conditions, the population, trends of Fusarium spp., Erwiniaspp., and flourescent Psedudomonas spp. were increased in May and July in general, but decreased in the other month. It was observed that in all type of soil, Fusarium spp. was distributed in abundance in and on rihizosphere, and decreased the propagules numbers as soil depth increase. The numbers of Erwinia spp. and fluorescent Pseudo-monas spp. were distributed greater in numbers on the surface zone of soil depth decreasing the numbers along the soil layer increase, and also in 2years continuous culture of soil especially, a great numbers of Erwinia spp. and fluorescent Pseudomonas were evenly distributed in surface zone and rhizosphere. Ginseng disease with a high incidence of bacterial disease in continuous culture of 2 and 4 years was seemed to be associated with soil bacteria that was high in numbers of Erwinia spp. and fluorescent Pseudomonas spp. in May and July.

  • PDF