• Title/Summary/Keyword: Rhizoctonia spp.

Search Result 54, Processing Time 0.025 seconds

Pink Pigmented Facultative Methylotrophic Bacteria(PPFMs): Introduction to Current Concepts (분홍색 색소를 형성하는 methylotrophic acteria(PPFMs): 최근 경향소개)

  • Munusamy, Madhaiyan;Sa, Tongmin;Kim, Jai-Joung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.4
    • /
    • pp.266-287
    • /
    • 2004
  • The non infecting, plant associated bacteria have attracted increased attention for stimulating plant growth and as environmental friendly plant protecting agents. Pink-pigmented facultatively methylotrophic bacteria (PPFMs), classified as Methylobacterium spp., are persistent colonizers of plant leaf surfaces. As the leaves of most or all plants harbor PPFMs that utilize leaf methanol as their sole source of carbon and energy, which is a specific attribute of the genus Methylobacterium. Although they are not well known, these bacteria are co-evolved, interacting partners in plant metabolism. This claim is supported, for example, by the following observations: (1) PPFMs are seed-transmitted, (2) PPFMs are frequently found in putatively axenic cell cultures, (3) Low numbers of seed-borne PPFMs correlate with low germinability, (4) Plants with reduced numbers of PPFM show elevated shoot/root ratios, (5) Foliar application of PPFMs to soybean during pod fill enhances seed set and yield, (6) Liverwort tissue in culture requires PPFM-produced vitamin B12 for growth, (7) treated plants to suppress or decrease disease incidence of sheath blight caused by Rhizoctonia solani in rice, and (8) the PPFM inoculation induced number of stomata, chlorophyll concentration and malic acid content, they led to increased photosynthetic activity. Methylobacterium spp. are bacterial symbionts of plants, shown previously to participate in plant metabolism by consuming plant waste products and producing metabolites useful to the plant. There are reports that inform about the beneficial interactions between this group of bacteria and plants. Screening of such kind of bacteria having immense plant growth promoting activities like nitrogen fixation, phytohormone production, alleviating water stress to the plants can be successfully isolated and characterized and integration of such kind of organism in crop production will lead to increased productivity.

In Vitro Antagonistic Effects of Bacilli Isolates against Four Soilborne Plant Pathogenic Fungi

  • Kim, Wan-Gyu;Weon, Hang-Yeon;Lee, Sang-Yeob
    • The Plant Pathology Journal
    • /
    • v.24 no.1
    • /
    • pp.52-57
    • /
    • 2008
  • Twenty isolates of Bacillus spp. obtained from livestock manure composts and cotton-waste composts were tested for in vitro antagonistic effects against soilborne plant pathogenic fungi, Fusarium oxysporum, Phytophthora capsici, Rhizoctonia solani AG-4, and Sclerotinia sclerotiorum. Seven isolates of Bacillus spp. had antagonistic effects on mycelial growth of all the isolates of F. oxysporum tested. The bacterial isolate RM43 was the most effective to inhibit the mycelial growth of the fungal isolates. Twelve isolates of Bacillus spp. had antagonistic effects on mycelial growth of all the isolates of P. capsici tested. The bacterial isolates M34 and M47 were very effective to inhibit the mycelial growth of the fungal isolates. Thirteen isolates of Bacillus spp. had antagonistic effects on mycelial growth of all the isolates of R. solani AG-4 tested. The bacterial isolates M27 and M75 were very effective to inhibit the mycelial growth of the fungal isolates. Fourteen isolates of Bacillus sp. had antagonistic effects on mycelial growth of all the isolates of S. sclerotiorum tested. The bacterial isolates M49 and M75 were very effective to inhibit the mycelial growth of the fungal isolates. The antagonistic effects of most Bacillus spp. isolates against the isolates of the four fungi differed depending on the fungal species and the isolates of each fungus. The bacterial isolates M27 and M75 were the most effective to inhibit the mycelial growth of all four fungi.

Anastomosis Types and Hyphal Interactions among Different Location and Field Isolates of Rhizoctonia solani AG-1(IA), R. oryzae and R. oryzae-sativae (Rhizoctonia solani AG-1(IA), R. oryzae, R. oryzae-sativae의 다른 지역(地域) 및 포장분리(圃場分離) 균주(菌株)들간의 균사융합형(菌絲融合型)과 균사상호작용(菌絲相互作用))

  • Kim, Wan-Gyu
    • The Korean Journal of Mycology
    • /
    • v.21 no.3
    • /
    • pp.188-194
    • /
    • 1993
  • Anastomosis types and hyphal interactions in culture among different location and field isolates of Rhizoctonia solani AG-1(IA), R. oryzae and R. oryzae-sativae were examined. In the pairings of R. solani AG-1(IA) isolates, cytoplasmic fusion only occurred in the self-anastomoses, and non-cytoplasmic fusion occurred in the other combinations. In the pairings of R. oryzae isolates, cytoplasmic fusion occurred in six combinations between different location isolates and in two combinations between different field isolates from the same locations as well as in the self-anastomoses. In that case, four isolates of the fungus reciprocally made the cytoplasmic fusion. In the pairings of R. oryzae-sativae isolates, only non-cytoplasmic fusion occurred among the different location and field isolates, in which cytoplasmic fusion also occurred in the self-anastomoses. When non-cytoplasmic fusion isolates(NCFIs) of R. solani AG-1(IA) were opposed on PDA, a killing zone developed between the NCFls paired after incubation. The killing zone also developed between the NCFls of R. oryzae paired. No killing zone developed between the cytoplasmic fusion isolates(CFIs) of R. oryzae, in which mycelia of the CFIs intermingled with each other without formation of any demarcation line. An entangled zone instead of the killing zone developed between the NCFIs of R. oryzae-sativae.

  • PDF

Isolation of Antibiotic-producing Microorganisms Antagonistic to Soilborne Pathogenic Fungi of Bentgrass and Their Antifungal Activity (잔디 토양전염성병원진균에 대한 길항미생물의 분리 및 길항효과)

  • 이용세;전하준;이창호;송치현
    • Korean Journal of Organic Agriculture
    • /
    • v.6 no.1
    • /
    • pp.133-149
    • /
    • 1997
  • Recently, the importance of management and cultivation of grasses has been increased in Korea. Among these cultural practices, the appropriate control of diseases is considered more important than other cultivation techniques such as fertilization and irrigation. The damages of brown patch and large patch caused by Rhizoctonia spp. and Pythium blight caused by Pythium spp. are serious in the major cultivation area of turfgrass in Korea. Since these diseases are difficult to control by agrochemicals, the damages are very serious if these are occured. The periodic spray of agrochemicals, to protect and control these diseases could make some problems of toxicity and environmental pollution as well as rising of non-target diseases. Therefore, the biological methods to control diseases have been required to decrease problems resulted from overuse of agrochemicals, to conserve natural ecosystem, and to control effectively diseases of grasses in the long period. The number of studies about biological control using antagonistic microorganisms have been increased for last half century. However, the application of biological control method has been very limited. In this study, thirteen isolates of R. cerealis, 8 isolates of R. solani and 3 isolates of Phthyn spp. have been isolated from diseased turfgrass in golf course and grass-culture area that have patch and wilting symptoms of zoysia grass and creeping bentgrass. Isolation frequency of R. cerealis and R. solani was high in especially zoysiagrass, while Pythym spp. was isolated from bent grass at low frequency but showed high pathogenicity. Totally, 205 isolates of soil microorganisms were isolated in this study as primary antagonistic microorganism by Herr's triple agar layer plate and dual culture method using rhizosphere of grasses, soil of crop field as the source of antagonistic microorganisms. Among the 205 isolates, 23 isolates were actinomycetes and 182 isolates were bacteria. All of the actinomycetes were isolated by Herr's method. Antagonistic effect of primary isolated microorganisms was tested for in vitro mycelial growth inhibition against pathogenic fungi isolated from grasses and for inhibition of disease occurrence in 24 well tissue culture plate and pot experiment. Then, four isolated of bacteria which are BG23, BG74, BG136 and BG171 were selected as antagonistic microorganisms against soil-born pathogenic fungi of bentgrass.

  • PDF

Antifungal Activities of Pseudomonas spp. Strains Against Plant Pathogens and Optimization of Culture Conditions (식물병원성 진균에 항균 효과를 지닌 슈도모나스 균주의 항진균 활성 증진을 위한 배양조건의 최적화)

  • Chang, Seog-Won;Choi, Byung-Jin;Hong, Jeum-Kyu;Rho, Yong-Taek
    • Korean Journal of Microbiology
    • /
    • v.46 no.3
    • /
    • pp.248-254
    • /
    • 2010
  • To define the optimum conditions for the mass production of four antifungal Pseudomonas spp. isolated from soil, we have investigated culture conditions and effects of various nutrient sources on the bacterial growth and evaluated antagonistic activity against Rhizoctonia solani and Sclerotinia homoeocarpa, plant pathogens. The optimum temperature and pH for the growth of these isolates were determined as pH 7.0 and $20^{\circ}$ or $25^{\circ}C$, respectively. Sucrose, tryptone, and $K_2HPO_4$ generally were more adequate for better growth as carbon, nitrogen and mineral source, respectively. The nutrient sources were also found to be very effective for high antifungal activities against R. solani and S. homoeocarpa. It was elucidated that YUD-F group (P. mandelii and P. fluorescens), which inhabit regions at relatively low temperature, had more broad spectrum and higher antifungal activity than YUD-O group (P. trivialis and P. jessenii) generally against R. solani and S. homoeocarpa. It is thought that the differences of the average temperature in the various habitats of Pseudomonas spp. influence the optimal growth temperature and antifungal activity. Especially, Pseudomonas spp. of YUD-O group showed the better antifungal activity against dollar spot caused by S. homoeocarpa, but showed relatively weaker antifungal activity against brown patch caused by R. solani.

Development of biological agent seeded on fine sand for control of brown patch and Pythium blight disease on golf course grasses.

  • Hur, Jae-Seoun;Lim, Kwang-Mi;Oh, Soon-Ok;Yum, Kyu-Jin;Koh, Young-Jin
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.88.1-88
    • /
    • 2003
  • Antogonistic bacteria against Rhizoctonia solani and Pythium spp., causing serious damage to golf course grasses, were isolated from the top soil of several golf courses in Korea. The isolate of Limk0102 was selected as the biological agent by characterization of antifungal activity, large scale preparation, fungicides tolerance and ecological fitness to the targe environment. The isolate was identified as Bacillus subtilis by biochemical and physiological characterization, and 165 rDNA sequence analysis. The bacterial agent was formulated as a granule type by seeding it on fine sand. The formulated agent showed high recovery rate (more than 10$\^$8/ cells/g sand) even after 6 month-storage at room temperature with similar antifungal activity with that of original cells. In vitro, the biological agent successfully exhibited antagonistic performance on bentgrass inoculated with R. solani or Pythium spp. isolated from the diseased grasses on golf courses. Field evaluation on disease control activity and ecological fitness of the agent is now under going on several golf courses.

  • PDF

Isolation and Purification of Several Substances Produced by Fusarium graminearum and Their Antimicrobial Activities (Fusarium graminearum이 생산하는 몇가지 물질의 분리정제 및 항균 활성)

  • 김병섭;김건우;이종규;이인원;조광연
    • Korean Journal Plant Pathology
    • /
    • v.11 no.2
    • /
    • pp.158-164
    • /
    • 1995
  • 토마토의 엽권에서 분리한 Fusariym graminearum이 분비하는 물질은 벼 도열병균(Pyricularia oryzae)의 여러 종의 식물병원 진균에 대한 항균활성을 나타내었으며, 이러한 활성물질을 PDA에서 본 균을 배양 한 후 chloroform으로 추출하여 분리정제 하였다. HPLC에 의하여 5종류의 활성 물질을 분획하였으며, 그중 1번(F402) 화합물을 벼 도열병균(P. oryzae)을 포함한 22개 식물 병원 진균에 대하여 살균 활성범위를 조사한 결과, 이 화합물은 50$\mu\textrm{g}$/ml 농도에서 Pythium ultimum, Rhizoctonia solani, Sclerotinia sclerotiorum은 전혀 억제하지 못하였으며, Phytophthora spp., Cladosporium fulvum, Fusarium spp., Corynespora cassicola에는 어느 정도의 활성이 있었지만 낮게 나타났고, P. oryzae, Cochliobolus miyabeanus, Alternaria solani는 100% 억제하여 활성이 높게 나타났다. 또한 장내 세균에 대한 활성을 MIC로 비교할 때 Streptococcus pyogenes, Streptococcus faecium에 대하여는 각각 12.5, 25 $\mu\textrm{g}$/ml였고 Staphylococcus aureus는 25-50$\mu\textrm{g}$/ml으로 나타났으며, Pseudomonas aeruginosa, Salmonella typhimurium, Klebsiella aerogenes, Enterobacter cloacae에서는 100$\mu\textrm{g}$/ml 이상으로 활성이 나타나지 않았다. F402를 200$\mu\textrm{g}$/ml의 농도로 직접 살포한 식물체에서의 방제효과는 벼도열병, 벼 깨씨무늬병, 보리 흰 가루병에 대하여는 80%이상이었으나, 벼 잎집무늬마름병, 오이 잿빛곰팡이병, 토마토 역병, 밀 녹병에서는 낮았다.

  • PDF

Protoplast Formation and Regeneration of Bacillus spp. (Bacillus spp.의 원형질체 형성 및 재생)

  • 최기춘;김광현;전우복
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.17 no.1
    • /
    • pp.11-18
    • /
    • 1997
  • This study was to provide the basic data in improving protoplast formation and regeneration of antagonistic bacteria against phytopathogenic fungi and pest. The antagonistic rhizobacterium, BS 101, against Rhizoctonia solrmi and Fusurium oxyspomm was isolated and identified as Bacillus subtilis. Another bacterium for protoplast formation and regeneration was B. thuringiensis subsp. kurstcJtiHD-l (BT 37669) which have insectcidal toxin in the orders Coleopteria, Dipteria etc.. Auxotrophic mutants, BS 1013 and BT 69, were isolated by treating with NTG 300 ug/ml for 40 min. at $37^{\circ}C$, and with NTG 300 ug/ml for 30 min. at $37^{\circ}C$, respectively. The BS 1013 and BT 69 were converted to protoplas by treating with lysozyme 300 ugh1 for 30 min. at 37C, and lysozyme 9 mglml for 60 min. at $37^{\circ}C$, respectively. The fequencies of the protoplast formation of BS 1013 and BT 69 were 90.00 and 92.83% respectively, after 1~2 day at $37^{\circ}C$. The regeneration kequencies of the protoplasts BS 1013 and B T 69 were 0.52 and 0.10%, respectively, after 4~6 days at $37^{\circ}C$.

  • PDF

Studies on Cultural Characteristics and Pathogenicity of Rhizoctonia spp. and Effect of Fungicides (Rhizoctonia균의 배양특성 및 잔디에 대한 병원성과 살균제의 효과)

  • 이두형;유왕근;한경숙
    • Asian Journal of Turfgrass Science
    • /
    • v.6 no.2
    • /
    • pp.89-98
    • /
    • 1992
  • Cultural characteristics and pathogenicity on the isolates of Rhizoctonia oryzae, R. oryzae-sativae and anastomosis group of R. solani and evaluation of selected fungicides on brown patch disease of creeping bentgrass and large patch disease of zoysia grass were studied comparatively. From effect of temperature on the rate of mycelia growth, the result indicated that the temperature groups were separated into four types : isolates of R. oryzae and R. oryzae-sativae had an optimum temperature of $30~35^{\circ}C$. Anastomosis groups of R. solani were separated into three temperature types as followings : high temperature type had an optimum temperature from 25 to $30^{\circ}C$, moderate type had grown from 20 to $25^{\circ}C$ for optimum and low temperature type had an optimum temperature of $20^{\circ}C$ but at $35^{\circ}C$ did not grow. Inoculation tests showed that AG-1( I A), AG-1( I B), bentgrass isolate of R. solani and R. oryzae were strongly pathogenic on creeping bentgrass, followed by AG-2-1, AG-4, AG-5 and AG-2-2 isolates of R. solani moderately to weakly. Zoysia grass isolate of R. solani and R. oryzae were strongly pathogenic on zoysia grass but AG-1( I B) and AG-5 isolates of R. solani showed moderately pathogenic. Capro(iprodione oxine-copper) and mytan(myclobutanil) were extremely effective against brown patch disease of creeping bentgrass and large patch disease of zoysia grass followed by thiopan (thiopanate-methyl) and pencycuron for brown patch disease and tolos(tolclofos-methyl) and thiopan for large patch disease.

  • PDF

Soil Mineral Nutrients and Microbes Are Responsible for Large Patch Disease Caused by Rhizoctonia solani AG2-2 in Zoysiagrass Turf (골프장 한국잔디의 Rhizoctonia solani AG2-2에 의한 Large Patch 발생 토양에서 근권 미생물과 무기영양 평가)

  • Chang, Tae-Hyun;Ru, Yeon-Ju;Lee, Yong-Se
    • Asian Journal of Turfgrass Science
    • /
    • v.21 no.2
    • /
    • pp.113-126
    • /
    • 2007
  • Mineral nutrients and population dynamics of soil microbes in the root zones of zoysiagrass infected by Rhizoctonia solani AG2-2 and that of healthy plants were sampled from ten golf courses using a cup cutter(diameter $10\;cm\;{\times}\;8\;cm$ deep). Analysis of variance(ANOVA) showed significant differences in content of $NO_3$-N(P = 0.05), $NH_4$-N(P = 0.1), and K(P = 0.1) between infected and healthy samples. The content of $NO_3$-N in the soils of large patch was 9.49 mg/kg and that in soil of healthγ plants was 7.02 mg/kg. However, the content of $NH_4$-N in the soil of large patch was 12.02 mg/kg whereas 14.40 mg/kg for the soil under the healthy plants. The content of K in the soil of large patch was lower than that of soil of healthy plants. There was few numbers of Pseudomonas colonies In the soils of large patch compared to that of healthy plants. These results indicated that the content of $NO_3$-N, NH4-N, and K and the microbial population dynamics in root zones correlated to occurrence of large patch.