• Title/Summary/Keyword: Rheology properties

Search Result 600, Processing Time 0.032 seconds

Study on Viscoelastic Properties of Rice Plant (벼줄기의 점탄성(粘彈性) 특성(特性)에 관(關)한 연구(硏究))

  • Huh, Yun Kun
    • Korean Journal of Agricultural Science
    • /
    • v.13 no.2
    • /
    • pp.255-264
    • /
    • 1986
  • The objectives of this study were to examine the viscoelastic behaviour of stem samples of rice in force-relaxation and rheological model to represent its relaxation behaviour, and to study the effects of rate of deformation and initial deformation on the relaxation time. The results were as follows; 1. In the process of loading and unloading, there is any plastic deformation so called elasto-plastic hysterisis. 2. Loading and unloading of stem of rice for several cycles has also shown the reduction of plastic or residual deformation and work hardening. 3. The relaxation behaviour of stem of rice in compression may be described by a generalized Maxwell model consisting of three Maxwell units in parallel. The rheological equation of such a model is given as $$F(t)=C_1e^{{-t/{\tau}}_1}+C_2e^{{-t/{\tau}}_2}+C_3e^{{-t/{\tau}}_3}$$ 4. Force relaxation always increased with increasing rates of deformation and initial deformation.

  • PDF

SLUMPING RESISTANCE AND VISCOELASTICITY OF RESIN COMPOSITE PASTES (치과용 복합레진의 중합 전 slumping resistance와 점탄성)

  • Suh, Hee-Yeon;Lee, In-Bog
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.3
    • /
    • pp.235-245
    • /
    • 2008
  • The aim of this study was to develop a method for measuring the slumping resistance of resin composites and to relate it to the rheological characteristics. Five commercial hybrid composites (Z100, Z250, DenFil, Tetric Ceram, ClearFil) and a nanofill composite (Z350) were used to make disc-shaped specimens of 2 mm thickness. An aluminum mold with square shaped cutting surface was pressed onto the composite discs to make standardized imprints. The imprints were light-cured either immediately (non-slumped) or after waiting for 3 minutes at $25{\circ}C$ (slumped). White stone replicas were made and then scanned for topography using a laser 3-D profilometer. Slumping resistance index (SRI) was defined as the ratio of the groove depth of the slumped specimen to that of the nonslumped specimen. The pre-cure viscoelasticity of each composite was evaluated by an oscillatory shear test and normal stress was measured by a squeeze test using a rheometer. Flow test was also performed using a flow tester. Correlation analysis was performed to investigate the relationship between the viscoelastic properties and the SRI. SRI varied between the six materials (Z100 < DenFil < Z250 < ClearFil < Tetric Ceram < Z350). The SRI was strongly correlated with the viscous (loss) shear modulus G' but not with the loss tangent. Also, slumping resistance was more closely related to the resistance to shear flow than to the normal stress. Slumping tendency could be quantified using the imprint method and SRI. The index may be applicable to evaluate the clinical handling characteristics of composites.

Quality Characteristics and Dough Rheological Properties of Pan Bread with Perilla Seed Powder (들깨분말을 첨가한 식빵의 레올로지 및 품질특성)

  • Ji, Joung-Lan;Jeong, Hyun-Chul
    • Culinary science and hospitality research
    • /
    • v.19 no.3
    • /
    • pp.142-155
    • /
    • 2013
  • This study investigates perilla seed powder substituted for wheat flour in bread recipes with the amounts of 0%(control), 5%, 10%, 15%, and 20%. Perilla seed powder consists of 9.41% of moisture content, 9.14% of crude protein, 1.12% of crude fat, and 2.97% of crude ash. Sedimentation value and pelshenke value have decreased as the perilla content increased. The farinograph measurement result of the bread made with perilla seed powder showed that consistency, water absorption and tolerance index have increased as the perilla content increased. The amylograph measurement result of the bread made with perilla seed powder showed that T, P, H, F, P-H and F-H have decreased as the perilla content increased. Baking loss and specific loaf volume have decreased as the perilla content increased. The chromatic 'L' and 'b' values were reduced as more perilla was added to more pan bread, while the chromatic 'a' value increased. The texture measurement result showed that the hardness of bread have increased as the ingredient contents increased. Their cohesiveness, spinginess, and chewiness have decreased as the ingredient contents increased. Overall preference scores showed a high preference for the bread made with 15% perilla seed powder.

  • PDF

Electro-rheological Measurements of Phase Inversion of Emulsions under Shear Flow (전단응력 하에서 에멀젼 상 변이의 측정을 위한 전기 유변학적 연구)

  • Seung Jae, Baik;Young-Jin, Lee;Yoon Sung, Nam;Chin Han, Kim;Han Kon, Kim;Hak Hee, Kang
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.147-151
    • /
    • 2004
  • This study aims at measuring electrical and rheological properties of cosmetic emulsions on the skin under shear flow. The effects of volume ratio and surfactants on structural changes of emulsions were examined by determining the changes of electrical resistance, viscosity, and morphology. As the ratio of the internal phase increased, the phase inversion occurred more quickly. The viscosity change was found to increase with increasing of the variation of electrical resistance of the emulsions. This phenomenon may be caused by decreased resistant force against the shear flow because of the breakdown of the internal phase. Surfactants a]so played a key ro]e on phase transition of emulsions. It is likely that polymeric surfactants anchoring on the emulsion surface reinforced the interfacial mechanical strength. As the concentration of surfactants increased, the phase transition occurred more slowly. It has been demonstrated that the phase changes of emulsions under shear flow can be monitored on the real-time basis by using a JELLI$\^$TM/ chip system, a combination of conductiometry and rheometry. Our approach is expected to a useful experimental tool for predicting the phase transition of the cosmetic products during skin application.

Development of Yeast Leavened Pan Bread Using Commercial Doenjangs(Korean Soybean Paste): 2. Correlation between Factors Relating with Dough Extensibility and Bread Quality in Addition of Doenjang (시판 된장을 이용한 식빵 제조: 2. 된장 첨가에 따른 반죽 신장성 관련인자와 빵품질 특성과의 상관성 조사)

  • 오현주;김창순
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.5
    • /
    • pp.880-887
    • /
    • 2004
  • This study was carried out to examine the effect of added Doenjang on wheat flour dough and gluten rheological properties using Micro-extensigraph method and correlation between factors relating with Doenjang or dough rheology and bread Quality. There were big differences in pretense activity and free amino acid contents among seven commercial Doenjangs. The addition of Doenjang to wheat flour dough required increased mixing time for gluten development. Dry gluten content increased significantly with addition of less than 5.0% of Doenjang powder. As the amount of Doenjang powder increased, dough peak force decreased and extensibility increased up to a certain level an then decreased, producing the weak dough. This phenomena was seen more obviously in wet gluten than wheat flour dough. Especially, the Doeniang having high pretense activity and high cystein content, caused highly extensible weak dough resulting in bread with high loaf volume and tender texture at the levels of 2.5% added Doenjang. Increase of dry gluten content and extensibility of wheat flour dough or wet gluten positively correlated (r=0.76, 0.91, 0.93), with loaf volume and negatively with hardness values, respectively. Therefore, it was concluded that improvement of bread quality with Doenjang resulted from increase of gluten content and dough extensibility.

Effects of Added WPC and WP on the Quality and Shelf Life of Tofu (WPC 및 WP 첨가가 두부 품질 및 저장성에 미치는 영향)

  • Kim, Jong-Un;Song, Kwang-Young;Seo, Kun-Ho;Yoon, Yoh-Chang
    • Journal of Dairy Science and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.93-109
    • /
    • 2012
  • This study was performed to investigate the effects of added whey protein concentrates (WPC) and whey powder (WP) on the quality and shelf life of Tofu, a traditional food in Korea. Combined whey powder and whey protein concentrates were obtained at drainage after the casein was separated by using rennet enzyme or acidification of milk. We manufactured whey Tofu and evaluated its nutritional quality by testing, the general composition for yield, moisture, pH, crude protein, crude fat, carbohydrate, rheology, sensory properties, and change during storage. 1. The general compositions of WPC and WP were as follows: (a) WPC: moisture, 5.9%; crude protein, 56.2%; crude fat, 0.1%; carbohydrate, 32.6%; ash, 5.2%; and pH 5.93 and (b) WP: moisture, 3.7%; crude protein, 13.2%; crude fat, 1.6%; carbohydrate, 74.4%; ash, 7.1%; and pH, 6.65. 2. The yield of Tofu was as follows: (a) in WPC, the content was $CaCl_2$:GDL=6:4 > $CaCl_2$:GDL=9:1 > $CaCl_2$:GDL=7:3 > $CaCl_2$:GDL=8:2 and (b) in WP, 2% addition was the highest (265%) at $13.3g/cm^2$, but with 4% addition WP was the lowest (184%) at $22.2g/cm^2$. 3. The moisture content of Tofu was as follows: (a) in WPC, the content was $CaCl_2$:GDL = 6:4 > $CaCl_2$:GDL=9:1 > $CaCl_2$:GDL=7:3 > $CaCl_2$:GDL=8:2 and (b) in WP, 2% addition was the highest at 79.82% ($13.3g/cm^2$), but 4% was the lowest at 75.18% ($22.2g/cm^2$). 4. The pH of Tofu was as follows: (a) in WPC, the value was WPC 6% > WPC 4% > WPC 2% > control and $CaCl_2$:GDL=6:4 > $CaCl_2$:GDL=8:2 > $CaCl_2$:GDL=9:1 > $CaCl_2$:GDL=7:3 and (b) in WP, WP 4% > WP 2% > control. 5. The ash content of Tofu was as follows: (a) in WPC, the content was $CaCl_2$:GDL=8:2 > $CaCl_2$:GDL=7:3 > $CaCl_2$:GDL=6:4 > $CaCl_2$:GDL=9:1 and (b) in WP, there was no difference between 2% and 4% addition. 6. The crude protein content of Tofu was as follows: (a) in WPC, the content was $CaCl_2$:GDL=8:2 > $CaCl_2$:GDL=7:3 > $CaCl_2$:GDL=9:1 > $CaCl_2$:GDL=6:4 and (b) in WP, there was no difference between 2% and 4% addition. 7. The crude fat content of Tofu was as follows: (a) in WPC, the content was $CaCl_2$:GDL=8:2 > $CaCl_2$:GDL=7:3 > $CaCl_2$:GDL=9:1 > $CaCl_2$:GDL=6:4 and (b) in WP, values decreased with increasing pressed weight. 8. The carbohydrate content of Tofu was as follows: (a) in WPC, the content was $CaCl_2$:GDL=8:2 > $CaCl_2$:GDL=7:3 > $CaCl_2$:GDL=6:4 > $CaCl_2$:GDL=9:1 and (b) in WP, values increased with increasing pressed weight. 9. The rheology test results of Tofu were as follows: (a) in WPC, hardness and brittleness was highest with $CaCl_2$:GDL=8:2 and 6% added WPC. Cohesiveness was highest with $CaCl_2$:GDL=6:4 and 2% added WPC. Elasticity was the highest with $CaCl_2$:GDL=7:3 and the added WPC control. (b) in WP, hardness was the highest with $22.2g/cm^2$ and added WP control. Cohesiveness was the highest with $17.8g/cm^2$ and added WP 2%. Elasticity was the highest with $17.8g/cm^2$ and added WP 4%. Brittleness was the highest with $17.8g/cm^2$ and added WP control. 10. The sensory test results of Tofu were as follows: (a) in WPC, the texture, flavor, color, and smell were the highest with $CaCl_2$:GDL=6:4 and 6% added WPC. (b) in WP, the texture was the highest in the control with $22.2g/cm^2$. Flavor and smell were the highest in WP 2% and $22.2g/cm^2$. Color was the highest in WP 2% and $17.8g/cm^2$. 11. The quality change of Tofu during storage was as follows: (a) in WPC, after 60 h, all samples began to get spoiled and their color changed, and mold began to germinate. (b) in WP, the result was similar, but the rate of spoilage was more rapid than that in the control.

  • PDF

Effects of hydrocolloids on wheat flour rheology (Hydrocolloid의 첨가가 밀가루 반죽의 특성에 미치는 영향)

  • 임경숙;황인경
    • Korean journal of food and cookery science
    • /
    • v.15 no.3
    • /
    • pp.203-209
    • /
    • 1999
  • The effect of several hydrocolloids on the rheological behavior of wheat flour was investigated. The influence of the selected hydrocolloids (alginate, carrageenan, CMC, guar, locustbean and xanthan) on wheat flour was tested by using two different techniques; amylograph and texture analyzer. In order to have a general overview of their effects hydrocolloids were chosen from different sources implying a broad diversity of chemical structures. The hydrocolloid addition decreased the brightness(L) but increased yellowness(b). The interaction between hydrocolloid and flour produces a slight modification of the amylogram parameters, being the most clearly affected parameter breakdown, which is increased by carrageenan, guar and xanthan. Hardness and cutting force were augmented by hydrocolloid addition, while springeness was decreased except guar and locustbean. In summary, when looking for the improvement of the noodle texture, guar, locustbean are the best candidate additives due to their effects on pasting and texture properties. These hydrocolloids increase the hardness, cutting force, gumness, chew-ness, so were thought to increase the eating quality. So, each tested hydrocolloid affected in a different way the rheological properties of wheat flour, the results obtained are important for the appropriate use of these hydrocolloid as ingredients in the noodle making process.

  • PDF

Effect of Hollow Glass Powder on the Self-Compacting Concrete (유공 유리분말이 자기충전 콘크리트의 특성에 미치는 영향)

  • Yoon, Seob;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.2
    • /
    • pp.141-149
    • /
    • 2018
  • In this study, compacting, passing performance, segregation resistance and rheological properties were tested to improve the stability of fresh concrete in the production and construction of self-compacting concrete (SCC) using hollow glass powder(GB). As a result, T50 reaching time was shortened up to amount of GB $2.0kg/m^3$. The compacting according to the amount of GB was improved by ball bearing effect of GB. However, T50 reaching time was slightly increased at $4.0kg/m^3$. In the case of passing performance, the result showed that plain was Class 1, GB $0.5{\sim}2.0kg/m^3$ was Class 0, GB $4.0kg/m^3$ was Class 1. Therefore, the passing performance was improved with 'No blocking' up to amount of GB $2.0kg/m^3$. Passing performance Block step (PJ) number by J-ring method was also best at GB $1.0kg/m^3$. In the case of segregation resistance according to the amount of GB, dynamic segregation resistance was increased compared to plain regardless of the amount of GB. And static segregation resistance showed 2.5% of segregation rate at GB $1.0kg/m^3$. Therefore, it was greatly improved compared to plain (12.5%). In the case of rheology property according to the amount of GB, plastic consistency by increasing of GB content didn't show big difference. However, yield stress by increasing of GB content was decreased with GB $1.0kg/m^3$. In conclusion, GB $1.0kg/m^3$ was effective for improvement of compacting, passing performance and yield stress. Also, it will be useful for stability of SCC by improving segregation.

Quality Characteristics of Pound Cake with Citrus mandarin Powder during Storage (감귤 분말을 첨가한 파운드케이크의 저장 중 품질 특성)

  • Park, Yeong-Sun;Shin, Sol;Shin, Gil-Man
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.18 no.6
    • /
    • pp.1022-1031
    • /
    • 2008
  • Pound cakes were prepared with Citrus mandarin powder(CMP) cultivated in JeJu Island, Korea. The impact of CMP amount level, which was incorporated into wheat flour by the ration of 0, 5, 10, 15, and 20% based on a flour weight, on the rheology and sensory profile of the pound cakes was measured. Moisture content of 13.70%, crude protein 5.12%, crude lipid 1.30%, crud ash 1.92%, respectively. Also evaluation was performed on the changes in physicochemical properties of the pound cakes during storage at 4 and $30^{\circ}C$. According to the amylogram, gelatinization temperature of the control dough was $63.35^{\circ}C$ and those of the dough with CMP were $63.85{\sim}66.55^{\circ}C$. Maximum viscosity of the dough was 686 B.U in the control, those were 575 B.U, 553 B.U, 504 B.U and 401 B.U in the dough with 5, 10, 15, and 20% CMP, respectively. The retrogradation degree(setback value) of CMP dough was $31{\sim}57%$ lower than that of the control dough under the same conditions. Water holding capacity of pound cake was increased gradually in proportion to the amount of CMP. The CMP addition decreased the brightuess(L) of pound cakes but increased redness(a) and yellowness(b). Hardness of pound cakes was significantly increased by CMP addition, while springiness, adhesiveness and cohesiveness were decreased. Based on sensory evaluation, pound cakes added with CMP were not significantly different in color and texture, while that of 10% CMP was significantly high in taste, flavor, and overall preferences, compared to the control. pH of pound cake with CMP was decreased during storage, showing that pH of CMP samples was lower than the control. Titrated acidity of pound cake with CMP was increased rapidly from storage for 10 days, which the changes in degree was fast in accordance with CMP amount. The Hunter's color value of pound cake with CMP was decreased, as the storage time proceeded. In the samples prepared with CMP, the firmness, adhesiveness, gumminess and chewiness was increased as the storage time proceeded, while springiness and cohesiveness was decreased.

  • PDF

Effects of Limestone Powder and Silica Fume on the Hydration and Pozzolanic Reaction of High-Strength High-Volume GGBFS Blended Cement Mortars (고강도 고함량 고로슬래그 혼합 시멘트 모르터의 수화 및 포졸란 반응에 미치는 석회석 미분말과 실리카퓸의 영향)

  • Jeong, Ji-Yong;Jang, Seung-Yup;Choi, Young-Cheol;Jung, Sang-Hwa;Kim, Sung-Il
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.127-136
    • /
    • 2015
  • To evaluate the effects of limestone powder and silica fume on the properties of high-strength high-volume ground granulated blast-furnace slag (GGBFS) blended cement concrete, this study investigated the rheology, strength development, hydration and pozzolanic reaction characteristics, porosity and pore size distribution of high-strength mortars with the water-to-binder ratio of 20, 50 to 80% GGBFS, up to 20% limestone powder, and up to 10% silica fume. According to test results, compared with the Portland cement mixture, the high-volume GGBFS mixture had much higher flow due to the low surface friction of GGBFS particles and higher strength in the early age due to the accelerated cement hydration by increase of free water; however, because of too low water-to-binder ratio and cement content, and lack of calcium hydroxide content, the pozzolanic reactio cannot be activated and the long-term strength development was limited. Limestone powder did not affect the flowability, and also accelerate the early cement hydration. However, because its effect on the acceleration of cement hydration is not greater than that of GGBFS, and it does not have hydraulic reactivity unlikely to GGBFS, compressive strength was reduced proportional to the replacement ratio of limestone powder. Also, silica fume and very fine GGBFS lowered flow and strength by absorbing more free water required for cement hydration. Capillary porosities of GGBFS blended mortars were smaller than that of OPC mortar, but the effect of limestone powder on porosity was not noticeable, and silica fume increased porosity due to low degree of hydration. Nevertheless, it is confirmed that the addition of GGBFS and silica fume increases fine pores.