• 제목/요약/키워드: Rheology Forming

검색결과 49건 처리시간 0.022초

내마모계 Al-Si 재료의 레오로지 성형기술 개발 (I);충진거동 및 결함분석 (Development of Rheology Forming Technology of Wear Resistance Al-Si Materials (I);Filling Behavior and Defect Evaluation)

  • 정홍규;강성수;문영훈;강충길
    • 한국주조공학회지
    • /
    • 제20권6호
    • /
    • pp.368-376
    • /
    • 2000
  • Rheology forming technology has been accepted as a new method for fabricating near net shaped products with lightweight aluminum alloys. The rheology forming process consists of reheating process of billet, billet handling, filling into the die cavity and solidification of rheology formed part. The rheology forming experiments are performed with two different die temperatures ($T_d$ = $200^{\circ}C$, $300^{\circ}C$) and orifice gate type. The filling behavior and various defects of Al-Si materials with wear resistance (A357, A390 and ALTHIX 86S) fabricated in rheology forming process are evaluated in terms of alloying elements and surface non-uniformity. Finally, the methods to obtain the rheology formed products with high quality are described by solutions for avoiding the surface and internal defects.

  • PDF

레오로지 소재의 고상입자 변형거동 해석 (Solid Particle Behavior Analysis in Rheology Material by Fortran 90)

  • 권기영;강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.234-237
    • /
    • 2008
  • It was reported that the semi-solid forming process has many advantages over the conventional forming process, such as a long die life, good mechanical properties and energy savings. It is very important, however, to control liquid segregation to gain mechanical property improvement of materials. During forming process, Rheology material has complex characteristics, thixotropic behavior. Also, difference of velocity between solid and liquid in the semi-solid state material makes a liquid segregation and specific stress variation. Therefore, it is difficult for a numerical simulation of the rheology Process to be Performed. General Plastic or fluid dynamic analysis is not suitable for the behavior of rheology material. The behavior and stress of solid particle in the rheology material during forging process is affected by viscosity, temperature and solid fraction. In this study, compression experiments of aluminum alloy were performed under each other tool shape. In addition, the dynamics behavior compare with Okano equation to Power law model which is viscosity equation.

  • PDF

레오로지 소재의 압축변형시 고상입자 거동의 동역학 해석 (Dynamics Simulation of Solid Particles in Compression Deformation of Rheology Material)

  • 이창수;강충길
    • 소성∙가공
    • /
    • 제15권5호
    • /
    • pp.395-401
    • /
    • 2006
  • It is reported that semi-solid forming process takes many advantages over the conventional forming process, such as a long die life, good mechanical properties and energy saves. It is important to predict the deformation behavior for optimization of the forging process with semi-solid materials and to control liquid segregation for mechanical properties of materials. But rheology material has thixotropic, pseudo-plastic and shear-thinning characteristics. So, it is difficult for a numerical simulation of the rheology process to be performed because complicated processes such as the filling to include the state of the free surface and solidification in the phase transformation must be considered. General plastic or fluid dynamic analysis is not suitable for the analysis of the rheology material behavior. Recently, molecular dynamics is used for the behavior analysis of the rheology material and turned out to be suitable among several methods. In this study, molecular dynamics simulation was performed for the control of liquid segregation, forming velocity, and viscosity in compression experiment as a part of study on the analysis of rheology forming process.

나선형 기계 교반 장치를 이용한 Al 합금 레오로지 소재의 제조 (The Manufacture of Aluminum Rheology Materials by Spiral Stirring Equipment)

  • 한수훈;배정운;강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.397-400
    • /
    • 2007
  • Recently, rheology forming technology has been interested in industrial and academic for light weight materials and to solve environmental issues. In this study, the rheology material production equipments were used to be made spiral shape by special design. And the experiment variables established stirring time 0 $\sim$ 1200 sec, stirring velocity 0 $\sim$ 100 rpm and several material temperature of semi - solid states. The rheology materials were made for established experiment conditions then measured mechanical properties. Sequence-production equipments were appended to fabrication system of rheology material for make rheology materials continually. Therefore, the development of sequence-production equipments were demanded for fine grains and for uniform globule shape rheology materials by a specially designed spiral stirrer machine.

  • PDF

금속레오로지 소재성형의 연구동향 및 대량생산을 위한 해결 방안 (Research Trends of Rheology Forming and Their Solutions to Mass Production)

  • 강충길
    • 소성∙가공
    • /
    • 제11권2호
    • /
    • pp.123-131
    • /
    • 2002
  • The rheology process is net shape manufaturing technology to high of automobile part and improve the mechanical properties. For the rheology forming process, Phase and globular microstructure are very important. The equipments to make a rheology alloys with slurry statement have been introduced. Therefore, the Problems to Produce a rheology alloyas with continuous process had also been investigated to make Production in industries. The validity of the introduced rheology Process is investigated by comparing the reported thixoforming results. Therefore, the many advantage of rheology process to be reduced the reheating Process and billet fabrication method has been expressed in terms of mass production, in the future.

나선형 기계 교반 레오로지 소재의 이용한 Thixoforging 공정 (Thixoforging Process of Rheology Materials fabricated by Spiral Mechanical Stirring)

  • 한수훈;정일갑;배정운;강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.131-134
    • /
    • 2007
  • A semi-solid forming technology has a lot of advantages compared to the die casting, squeeze casting and hot/cold forging, so semi-solid forming has been studied actively. Semi-solid forming has two methods. One is thixoforming with reheating of prepared billet, the other is rheoforming with cooled melt until semi-solid state. Thixoforging technology can produce non-dendritic alloys for semi-solid forming complex shaped parts in metal alloys. In this study, the thixoforging was experimented with made rheology materials by the spiral stirrer equipment. Rheology materials for forging were made by A356 casting aluminum alloy and A6061 wrought aluminum alloy. After experiment, forged samples were measured microstructure and were heat treated for high mechanical properties.

  • PDF

반응고 재료에서 점성을 고려한 고상입자의 거동예측을 위한 수치모사 해석 (Dynamic Simulation of Solid Particle Considering Change by Viscosity in Rheology Material)

  • 권기영;강충길
    • 소성∙가공
    • /
    • 제18권1호
    • /
    • pp.26-38
    • /
    • 2009
  • It was reported that the semi-solid forming process has many advantages over the conventional forming process, such as a long die life, good mechanical properties and energy savings. It is very important, however, to control liquid segregation to gain mechanical property improvement of materials. During forming process, rheology material has complex characteristics, thixotropic behavior. Also, difference of velocity between solid and liquid in the semi-solid state material makes a liquid segregation and specific stress variation. Therefore, it is difficult for a numerical simulation of the rheology process to be performed. General plastic or fluid dynamic analysis is not suitable for the behavior of rheology material. The behavior and stress of solid particle in the rheology material during forging process is affected by viscosity, temperature and solid fraction. In this study, compression experiments of aluminum alloy were performed under each other tool shape which is rectangle shape(square array), rectangle shape(hexagonal array), and free shape tool. In addition, the dynamics behavior compare with Okano equation to power law model which is viscosity equation.

레오로지 소재의 압축 실험 시 고상입자 거동 예측을 위한 결정립 동역학 해석 (Analysis of grain size controlled rheology material dynamics for prediction of solid particle behavior during compression experiment)

  • 김현일;김우영;강충길
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.649-652
    • /
    • 2005
  • It is reported that semi-solid forming process takes many advantages over the conventional forming process, such as long die lift, good mechanical properties and energy saves. Rheology material has a thixotropic, pseudo-plastic and shear-thinning characteristic. Therefore, general plastic or fluid dynamic analysis is not suitable for the behavior of rheology material. So it is difficult for a numerical simulation of the rheology process to be performed because complicated processes such as the filling to include the state of the free surface and solidification in the phase transformation must be considered. Moreover, it is important to predict the deformation behavior for optimization of net shape forging process with semi-solid materials and to control liquid segregation for mechanical properties of materials. In this study, so, molecular dynamics simulation was performed for the control of liquid segregation in compression experiment as a part of study on analysis of rheology forming process.

  • PDF

전자교반을 응용한 알루미늄 레오로지 소재의 간접단조공정 (Indirect Forging Process with Aluminum Rheology Material by Electromagnetic Stirring System)

  • 오세웅;강성식;강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.135-138
    • /
    • 2007
  • A semi-solid forming processing has been developed for manufacturing near net-shape components. The semi-solid forming has two methods. One is thixo-forming with reheating prepared billet, the other is rheo- forming with cooled melt until semi-solid state. In indirect forging processing, this experiment used aluminum rheology materials by electromagnetic stirring system. Rheology material is made by A16061. An experiment has variation factors which are pressure, solid-fraction, stirring current and stirring time. Forged samples are found microstructures and mechanical properties. Forged samples are accomplished heat treatment T6 for high mechanical properties.

  • PDF

반용융 알루미늄 합금의 Thixoforming 공정에서 점도의 변화가 유도특성에 미치는 영향 (Effect of Viscosity Variation on Flow Characteristic in Thixoforming Process of Semi-Solid Aluminium Alloys)

  • 강충길;이유철
    • 소성∙가공
    • /
    • 제8권2호
    • /
    • pp.188-199
    • /
    • 1999
  • Semi-Solid Forming Process(Thixoforming, Rheocasting) is a novel forming process which has some advantages compared with conventional die casting, squeeze casting and hot/cold forging. In this study. Thixoforming process was selected as analysis processing in terms of billet handling and easiness of automation process. The Thixoforming process consists of reheating process of billet, billet handling, filling inot the die cavity and solidification of SSM part. In filling process, two rheology models which were Newtonian and Non-Nettonian model (Ostwald-deWaele)were verified with experimental results. The Ostwald-deWaele model shows the good agreement to the real flow and filling phenomena in die cavity. To give a boost the economical efficiency of Thixoforming process and to ensure the good forming result, reheating device coupled die set was proposed and the initial billet temperature for system that was found from experimental resluts. This study presents an overview of application of numerical analysis for simulation of semi-solid metal forming process to reduce the lead time for development of manufacturing part in industrial field.

  • PDF