• 제목/요약/키워드: Rheological Properties

검색결과 1,384건 처리시간 0.021초

열잠재성 촉매에 의한 에폭시/폴리우레탄 블랜드계의 경화거동, 유변학적 및 기계적 물성에 관한 연구 (Studies on Cure Behaviors and Rheological and Mechanical Properties of Epoxy/Polyurethane Blend System initiated by Latent Thermal Catalyst)

  • 강준길;권수한;박수진
    • 대한화학회지
    • /
    • 제46권3호
    • /
    • pp.233-240
    • /
    • 2002
  • 본 연구에서는 잠재성 양이온 개시제 (N-benzyl pyrazinium hexafluoroantiminate, BPH)를 이용한 에폭시/폴리우레탄 블랜드계의 혼합조성에 따른 경화거동과 유변학적 특성 그리고 기계적 물성 변화에 대하여 연구하였다. 블랜드계의 반응성은 DSC를 이용하여 반응 온도에 따른 전환률을 구하여 측정하였으며, 유변학적 특성은 레오미터를 이용한 등온 실험을 통하여 측정하였고, 가교 활성화에너지(Ec)는 겔화 시간과 경화 온도를 이용하여 Arrhenius 방정식으로 구하였다. 한편, 경화된 시편의 기계적 물성은 충격강도 실험을 통하여 측정하였다. 실험결과, 블랜드계의 열잠재성 촉매로 사용된 BPH는 어떤 공개시제 없이도 우수한 촉매 특성을 나타내었다. 본 블랜드계의 가교 활성화에너지 및 충격강도는 PU가 30 wt% 첨가되었을 때 최대를 나타내었는데, 이는 EP와 PU간의 수소결합으로 인한 치밀한 가교밀도의 증가 때문이라고 사료된다.

잠재성 경화제를 이용한 Cycloaliphatic/DGEBA계 에폭시 블렌드 시스템의 유변학적 특성 및 경화 동력학 (Rheological Properties and Cure Kinetics of Cycloaliphatic/DGEBA Epoxy Blend System Initiated by Cationic Latent Curing Agent)

  • 곽근호;박수진;이재락;김영근
    • 유변학
    • /
    • 제10권4호
    • /
    • pp.227-233
    • /
    • 1998
  • 잠재성 경화제인 N-benzylpyrazinium hexafluoroantimonate(BPH)를 Cycloaliphatic계 에폭시 (CAE)/DGEBA계 에폭시의 혼합물에 1 mol% 첨가 시킨 후 혼합 조성비에 따른 유변학적 특성과 경화 동력학에 대해 연구하였다. 잠재특성은 등온 DSC를 이용하여 각각 $150^{\circ}C$$50^{\circ}C$의 반응 온도에 대한시간의 함수로서 전화량을 구하여 측정하였다. 블렌드 시스템의 유변학적 특성은 레오미터를 사용한 등온 실험을 통하여 storage modulus (G'), loss modulus (G") 그리고 damping factor (tan$\delta$)를 구한 후 이들 데이터로부터 겔화 시간을 측정하였다. 겔화 시간과 경화 온도를 Arrenius equation에 적용시킨 결과 가교 활성화 에너지 ($E_c$)를 구할 수 있었으며 겔화 시간과 활성화 에너지 모두 DGEBA의 함량이 증가할수록 증가하였다. 경화 활성화 에너지 ($E_a$)를 동적 DSC를 이용하여 Kissinger method에 의해 구하였는데 활성화 에너지는 CAE의 함량이 증가할수록 감소함으로써 높은 반응성을 나타내었는데, 이는 짧은 반복 단위와 단순한 곁사슬기 그리고 반응 매질 내의 점도 등에 기인한다.기인한다.

  • PDF

쌀가루의 제분형태 및 첨가방법이 연제품의 물리적 및 관능적 특성에 미치는 영향 (Effects of Rice Flour Milling Types and Addition Methods on Rheological and Sensory Properties of Surimi Products)

  • 조승목;윤민석;김선봉
    • 한국수산과학회지
    • /
    • 제46권2호
    • /
    • pp.139-146
    • /
    • 2013
  • Surimi products are among the most prominent seafoods in Korea. Together with fish meat, wheat flour is a major ingredient in the preparation of surimi products. Rice flour, however, can be an effective ingredient in enhancing the rheological characteristics of surimi products. In this study, we evaluated the potential of rice flour as an agent to replace wheat flour in surimi products. The effects of rice flour milling types and addition methods on the rheological and sensory properties of surimi products were investigated. Among different addition methods, the surimi product containing non-treated rice flour showed better gel strength and sensory properties than products containing paste (1:1.3 rice flour/water, w/v) and steamed paste (steamed at $100^{\circ}C$ for 30 min). According to the gel strength results for surimi products with added roll-mill (40 mesh) and jet-mill (180 mesh) rice flours, the roll-mill rice flour shows good potential as a replacement for wheat flour. When considering gel strength and sensory properties, an effective amount of rice flour to add was 10-15% (w/w). In conclusion, the rheological and sensory properties of surimi products containing rice flour were comparable with those of a premium commercial surimi product. Therefore, rice flour might be an effective alternative to wheat flour for premium surimi products.

Rheological Properties of Waxy Rice Starch-Gum Mixtures in Steady and Dynamic Shear

  • Kim, Do-Dan;Lee, Young-Seung;Yoo, Byoung-Seung
    • Preventive Nutrition and Food Science
    • /
    • 제14권3호
    • /
    • pp.233-239
    • /
    • 2009
  • The effects of guar gum (GG) and xanthan gum (XG) at different concentrations (0, 0.2, 0.4, and 0.6% w/w) on the rheological properties of Korean waxy rice starch (WRS) pastes were evaluated under both steady and dynamic shear conditions. The flow properties of WRS-gum mixtures were determined from the rheological parameters of the power law model. The addition of GG and XG to WRS resulted in an increase in the apparent viscosity ($\eta_{a,100}$) and consistency index (K) values obtained from power law model. The flow behavior index (n) values of the WRS-XG mixtures decreased with an increase in gum concentration while there was only a marginal difference between n values for the WRS-GG mixtures. Dynamic moduli (G', G", and $\eta^*$) values in the WRS-gum mixture systems also increased with an increase in gum concentration. WRS-XG mixtures had higher dynamic moduli and lower tan $\delta$ (ratio of G"/G') values than WRS-GG mixtures, indicating that the higher dynamic rheological properties of WRS-XG can be attributed to an increase in the viscoelasticity of the continuous phase in the starch-gum mixture systems, which was due to the higher viscoleastic properties of XG compared to GG. The dynamic ($\eta^*$) and steady shear ($\eta_a$) viscosities of the WRS-XG paste at a 0.2% gum concentration followed the Cox-Merz superposition rule.

Emulsion rheology and properties of polymerized high internal phase emulsions

  • Lee, Seong-Jae
    • Korea-Australia Rheology Journal
    • /
    • 제18권4호
    • /
    • pp.183-189
    • /
    • 2006
  • High internal phase emulsions are highly concentrated emulsion systems consisting of a large volume of dispersed phase above 0.74. The rheological properties of high internal phase water-in-oil emulsions were measured conducting steady shear, oscillatory shear and creep/recovery experiments. It was found that the yield stress is inversely proportional to the drop size with the exponent of values between 1 and 2. Since the oil phase contains monomeric species, microcellular foams can easily be prepared from high internal phase emulsions. In this study, the microcellular foams combining a couple of thickeners into the conventional formulation of styrene and water system were investigated to understand the effect of viscosity ratio on cell size. Cell size variation on thickener concentration could be explained by a dimensional analysis between the capillary number and the viscosity ratio. Compression properties of foam are important end use properties in many practical applications. Crush strength and Young's modulus of microcellular foams polymerized from high internal phase emulsions were measured and compared from compression tests. Of the foams tested in this study, the foam prepared from the organoclay having reactive group as an oil phase thickener showed outstanding compression properties.

LLDPE/LDPE 혼합물의 유변 물성과 필름 제조 (Rheological Properties and Film Fabrication of LLDPE/LDPE Blends)

  • 오장훈
    • 유변학
    • /
    • 제7권3호
    • /
    • pp.173-180
    • /
    • 1995
  • LLDPE/LDPE 혼합물의 유변 물성과 필름가공특성 필름 물성 및 LLDPE의 extrudate 표면상태를 살펴보았다. LLDPE에 LDPE를 혼합함으로써 용융 강도가 크게 향상 되는 것을 볼수 있었으며 혼합비에 따라 필름의 기계적 물성이 변화하는 것을 볼수 있었다. 즉 최고의 물성을 나타내는 적절한 혼합비율이 존재하였다. 본논문에 사용된 LLDPE/LDPE 혼합물에 있어서는 LDPE의 함량이 15∼30wt%일 때 가장 우수한 기계적 물성을 얻을수 있 었다. LLDPE 필름의 표면 불량 문제를 보기위하여 capillary를 이용하여 LLDPE extrudate 의 표면 튀틀림(distortion)의 진행순서를 살펴본 결과, 전단 응력이 0.23MPa 일때 sharkskin이 발현함을 볼수 있었다.

  • PDF

동결건조 $\alpha$-미분의 물성에 관하여 (Rheological Properties of Freeze Dried $\alpha$-Rice Powder)

  • 김관유
    • 한국식품영양학회지
    • /
    • 제4권2호
    • /
    • pp.199-206
    • /
    • 1991
  • Rheological properties of $\alpha$-rice powder were investigated in comparison with those of polished rice powder. Flow behavior for cooked solutions of two powdered samples(5~11%) were Binghampseudo plastic. Consistency index and yield stress of cooked solution of powdered a-rice were much lower than those of polished rice powder while flow behavior index was nearly similar. 9% cooked solution of powdered $\alpha$ -rice showed slightly weaker thixotrophic behavior and more ease tendency to relax under the steady shear than those of polished rice powder.

  • PDF

Electrical and Rheological Properties of Chitosan Malonate Suspension

  • Choi, Ung-su
    • KSTLE International Journal
    • /
    • 제4권1호
    • /
    • pp.14-17
    • /
    • 2003
  • The electrical and rheological properties of a chitosan malonate suspension in silicone oil was investigated by varying the electric fields, volume fractions of particles, and shear rates, respectively, The chitosan malonate susepnsion showed a typical electrorheological (ER) response caused by the polarizability of an amide polar group and shear yield stress due to the formation of multiple chains upon application of an electric field. The shear stress fur the suspension exhibited a linear dependence on the volume fraction and an electric field power of 1.88. On the basis of the experimental results, the newly synthesized chitosan malonate suspension was found to be an anhydrous ER fluid.

Properties and particles dispersion of biodegradable resin/clay nanocomposites

  • Okada, Kenji;Mitsunaga, Takashi;Nagase, Youichi
    • Korea-Australia Rheology Journal
    • /
    • 제15권1호
    • /
    • pp.43-50
    • /
    • 2003
  • In this study, two types of biodegradable resins-based clay nanocomposites, in which organic montmorillonite clay was filled, were prepared by the direct melt blending method. In order to characterize the nanocomposite structure, wide-angle X-ray diffraction (WAXD) and TEM observation were performed. Characterization of the nanocomposites shows that intercalated and partially exfoliated structures were generated by the melt blending method. Mechanical and rheological properties of the nanocomposites were measured respectively. For the mechanical properties, there were improvements in tensile strength and Young's modulus of the nanocomposites due to the reinforcement of nanoparticles. The rheological behaviors of the nanocomposites were significantly affected by the degree of the dispersion of the organoclay. The storage modulus of the nanocomposites was measured and the degree of the dispersion of the organoclay was evaluated from the value of the terminal slope of the storage modulus. In addition, the quantity of the shear necessary for making the nanocomposite for melt intercalation method was estimated from the relationship between the value of the terminal slope of the storage modulus and the applied shear.

Effect of Storage Temperature on Dynamic Rheological Properties of Hot Pepper-Soybean Pastes Mixed with Guar Gum and Xanthan Gum

  • Choi, Su-Jin;Yoo, Byoung-Seung
    • Food Science and Biotechnology
    • /
    • 제16권3호
    • /
    • pp.496-499
    • /
    • 2007
  • Dynamic rheological properties of hot pepper-soybean paste (HPSP) samples mixed with guar gum and xanthan gum were evaluated at different storage temperatures (5, 15, and $25^{\circ}C$) by using a dynamic rheometer. Magnitudes of storage modulus (G'), loss modulus (G"), and complex viscosity (${\eta}^*$) in the HPSP-gum mixtures increased with an increase in storage temperature from 5 to $25^{\circ}C$. After 3-month storage at 5 and $15^{\circ}C$ there were no significant changes in dynamic rheological properties. The increase in dynamic moduli (G', G", and ${\eta}^*$) with storage temperature is less pronounced at HPSP-xanthan gum mixtures in comparison to HPSP-guar gum mixtures. The slopes of G' (0.16-0.18) of HPSP-guar gum mixtures at 3-month storage were much higher than that (0.10) at 0-month storage, indicating that the elastic properties of the HPSP-guar gum mixtures can be decreased after 3-month storage. However, there were not much differences between the slopes of G' in HPSP-xathan gum mixtures. Xanthan gum was observed to be better structure stabilizer for HPSP during storage.