• Title/Summary/Keyword: Reynolds-averaged Navier-Stokes Equations

Search Result 326, Processing Time 0.04 seconds

Analysis of Flow Field in a Steam Turbine Bypass Valve (증기터빈 바이패스밸브 케이지 유동장 해석관한 연구)

  • Choi Ji-Yong;Cho An-Tai;Kim Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.4 s.37
    • /
    • pp.36-42
    • /
    • 2006
  • In the present work, characteristics of the flow in the cage of a steam turbine bypass control valve for thermal power plant are investigated. Experimental measurement for wall static pressure has been carried out to validate numerical solutions. And, the flowfield is analyzed by solving steady three-dimensional Reynolds-averaged Navier-Stokes equations. Shear stress transport (SST) model is used as turbulence closure. The effects of the flow area between stages of the cage on the pressure drop are also found.

ROTATING FLOW ANALYSIS AROUND A HAWT ROTOR BLADE USING RANS EQUATIONS (RANS 방정식을 이용한 HAWT 로터 블레이드의 회전 유동장 해석)

  • Kim, T.S.;Lee, C.;Son, C.H.;Joh, C.Y.
    • Journal of computational fluids engineering
    • /
    • v.13 no.2
    • /
    • pp.55-61
    • /
    • 2008
  • The Reynolds-Averaged Navier-Stokes(RANS) analysis of the 3-D steady flow around the NREL Phase VI horizontal axis wind turbine(HAWT) rotor was performed. The CFD analysis results were compared with experimental data at several different wind speeds. The present CFD model shows good agreements with the experiments both at low wind speed which formed well-attache flow mostly on the upper surface of the blade, and at high wind speed which blade surface flow completely separated. However, some discrepancy occurs at the relatively high wind speeds where mixed attached and separated flow formed on the suction surface of the blade. It seems that the discrepancy is related to the onset of stall phenomena and consequently separation prediction capability of the current turbulence model. It is also found that strong span-wise flow occurs in stalled area due to the centrifugal force generated by rotation of the turbine rotor and it prevents abrupt reduction of normal force for higher wind speed than the designed value.

Shape Optimization of LMR Fuel Assembly Using Radial Basis Neural Network Technique (신경회로망 기법을 사용한 액체금속원자로 봉다발의 형상최적화)

  • Raza, Wasim;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.8
    • /
    • pp.663-671
    • /
    • 2007
  • In this work, shape optimization of a wire-wrapped fuel assembly in a liquid metal reactor has been carried out by combining a three-dimensional Reynolds-averaged Navier-Stokes analysis with the radial basis neural network method, a well known surrogate modeling technique for optimization. Sequential Quadratic Programming is used to search the optimal point from the constructed surrogate. Two geometric design variables are selected for the optimization and design space is sampled using Latin Hypercube Sampling. The optimization problem has been defined as a maximization of the objective function, which is as a linear combination of heat transfer and friction loss related terms with a weighing factor. The objective function value is more sensitive to the ratio of the wire spacer diameter to the fuel rod diameter than to the ratio of the wire wrap pitch to the fuel rod diameter. The optimal values of the design variables are obtained by varying the weighting factor.

Analysis of the three-dimensional Steady Flow through A Multi-blade Centrifugal Fan (다익송풍기 내부 3차원 정상유동의 수치해석)

  • Seo, Seoung-Jin;Chen, Xi;Kim, Kwang-Yong;Kang, Shin-Hyoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.1 s.6
    • /
    • pp.19-27
    • /
    • 2000
  • A numerical study is presented for analysis of three-dimensional incompressible turbulent flows in a multi-blade centrifugal fan. Reynolds-averaged Navier-Stokes equations with a standard $k-{\espilon}$ turbulence model are discretized with finite volume approximations. The computational area is divided into three blocks; inlet core, impeller and scroll parts, which are linked by a multi-block method. The flow inside of the fan is regarded as steady flow, and the mathematical models for the impeller forces were established from a cascade theory and measured data. Empirical coefficients are obtained comparing between computational and experimental results for the case without scroll, and are employed to simulate the flow through the impeller with scroll. In comparisons with experimental data, the validity of the mathematical models for the impeller forces was examined. The characteristics of the flow in the scroll were also discussed.

  • PDF

Numerical Analysis on Screech Tone in a Supersonic Jet (숯계산에 의한 초음속 제트의 스크리티 톤 소음 해석)

  • Kim, Yong-Seok;Lee, Duck-Joo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.94-100
    • /
    • 2007
  • An axisymmetric supersonic jet screech in the Mach number range from 1.07 to 1.2 is numerically simulated. The axisymmetric mode is the dominant screech mode for an axisymmetric jet. The Reynolds-averaged Navier-Stokes equations in the conjunction with a modified Spalart-Allmaras turbulence model are employed. A high resolution finite volume essentially non-oscillatory(ENO) schemes are used along with nonreflecting characteristic boundary conditions that are crucial to screech tone computations to accurately capture the sound waves, shock-cell structures and large-scale instability waves.

Performance Analysis of the Supersonic Nozzle Employed in a Small Liquid-rocket Engine for Ground Firing Test (소형 액체로켓엔진 지상연소시험용 초음속 노즐의 성능해석)

  • Kam, Ho-Dong;Kim, Jeong-Soo;Bae, Dae-Seok;Lee, Jae-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.321-324
    • /
    • 2011
  • A computational analysis of nozzle flow characteristics and plume structure using Reynolds-averaged Navier-Stokes equations with $k-{\omega}$ SST turbulence model was conducted to examine performance of the supersonic nozzle employed in a small liquid-rocket engine for ground firing test. Computed results and experimental outcome of 2-D converging-diverging nozzle flow were compared for verifying the computational capability as well as the turbulence model validity. Numerical computations of 2-D axisymmetric nozzle flow was carried out with the selected model. As a result, flow separation with backflow appeared around the nozzle exit. This investigation was reported as a background data for the optimal nozzle design of small liquid-propellant rocket engine for ground test.

  • PDF

Numerical Analysis of Free Surface Flow around Blunt Bow Ship Model (뭉뚝한 선수 선형 주위 자유수면 유동 수치 해석)

  • Park, Il-Ryong;Suh, Sung-Bu;Kim, Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.9-16
    • /
    • 2012
  • This paper presents the numerical results of a simulation of the free surface flow around a blunt bow ship model and focuses on the validation of the proposed method with a brief investigation of the relation between the resistance and free surface behavior. A finite volume method based on the Reynolds Averaged Navier-Stokes (RANS) approach is used to solve the governing flow equations, where the free surface, including wave breaking,is captured by using a two-phase Level-Set (LS) method. For turbulence closure, a two equation k-${\varepsilon}$ model with the standard wall function technique is used. Finally, the numerical results are compared with the available experimental data, showing good agreement.

Numerical Simulation of the Screech Phenomenon in a Supersonic Jet (수치계산에 의한 초음속 제트에서의 스크리치 현상 해석)

  • Kim, Yong-Seok;Kim, Sung-Cho;Kim, Jeong-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.329-334
    • /
    • 2007
  • An axisymmetric supersonic jet screech in the Mach number range from 1.07 to 1.2 is numerically simulated. The axisymmetric mode is the dominant screech mode for an axisymmetric jet. The Reynolds-averaged Navier-Stokes equations in the conjunction with modified Spalart-Allmaras turbulence model are employed. A high resolution finite volume essentially non-oscillatory(ENO) schemes are used along with nonreflecting characteristic boundary conditions that are crucial to screech tone computations to accurately capture the sound waves, shock-cell structures, unsteady shock motions and large-scale instability waves.

  • PDF

Flow Analysis around Multi-Legged Underwater Robot "Crabster" to Evaluate Current Loads (다관절 해저로봇 'Crabster'에 작용하는 조류하중 산정 및 유동해석)

  • Park, Yeon-Seok;Kim, Wu-Joan;Jun, Bong-Huan
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.5
    • /
    • pp.47-54
    • /
    • 2012
  • In this study, numerical simulations were performed to evaluate the current loads acting on the multi-legged underwater robot "Crabster" with a variety of incident angles using the ANSYS-CFX package. The Reynolds-averaged Navier-Stokes equations were solved to simulate the fluid flow around Crabster to calculate the forces and moments induced by incoming currents with various angles. First, to assess the posture stability of the body, the forces and moments were calculated with various incident angles when the current acted in the vertical and horizontal directions. Next, two forms of legs (box and foil types) were evaluated to determine the hydrodynamic force variation. Finally, the current forces and moments acting on the Crabster body with the legs attached were estimated.

CFD Study of the Vacuum-Pump Type Subsonic/Sonic Ejector Flows (진공 펌프형 아음속/음속 이젝터 유동에 관한 수치 해석적 연구)

  • 김희동;권오식;최보규
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.4
    • /
    • pp.26-35
    • /
    • 2000
  • This paper depicts the computational results for the axisymmetric subsonic/sonic ejector systems with a second throat. The numerical simulations are based on a fully implicit finite volume scheme of the compressible Reynolds-Averaged Navier-Stokes equations in a domain that extends from the stagnation chamber to the ejector diffuser exit. In order to obtain practical design factors for the subsonic/sonic ejector systems which are applicable to industrial vacuum pumps, the ejector throat area, the mixing section configuration, and the ejector throat length are changed in computations. For the subsonic/sonic ejector systems operating in the range of low operation pressure ratios, the effects of the design factors on the vacuum performance of the secondary chamber are discussed.

  • PDF