• Title/Summary/Keyword: Reynolds-averaged Navier-Stokes Analysis

Search Result 301, Processing Time 0.024 seconds

DETACHED EDDY SIMULATION OF BASE FLOW IN SUPERSONIC MAINSTREAM (초음속 유동장에서 기저 유동의 Detached Eddy Simulation)

  • Shin, J.R.;Won, S.H.;Choi, J.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.104-110
    • /
    • 2008
  • Detached Eddy Simulation (DES) is applied to an axisymmetric base flow at supersonic mainstream. DES is a hybrid approach to modeling turbulence that combines the best features of the Reynolds-averaged Navier-Stokes (RANS) and large-eddy simulation (LES) approaches. In the Reynolds-averaged mode, the model is currently based on either the Spalart-Allmaras (S-A) turbulence model. In the large eddy simulation mode, it is based on the Smagorinski subgrid scale model. Accurate predictions of the base flowfield and base pressure are successfully achieved by using the DES methodology with less computational cost than that of pure LES and monotone integrated large-eddy simulation (MILES) approaches. The DES accurately resolves the physics of unsteady turbulent motions, such as shear layer rollup, large-eddy motions in the downstream region, small-eddy motions inside the recirculating region. Comparison of the results shows that it is necessary to resolve approaching boundary layers and free shear-layer velocity profiles from the base edge correctly for the accurate prediction of base flows. The consideration of an empirical constant CDES for a compressible flow analysis may suggest that the optimal value of empirical constant CDES may be larger in the flows with strong compressibility than in incompressible flows.

  • PDF

The analysis of flow over the bridge using preconditioned Navier-Stokes code (예조건화 Navier-Stokes 코드를 이용한 교각 유동해석)

  • Yoo, Il-Yong;Lee, Seung-Soo;Park, Si-Hyong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.13-16
    • /
    • 2008
  • After the collapse of the Tacoma bay bridge at Tacoma Washington, the accurate prediction of aerodynamics became crucial to the sound design of bridges. CFD(Computational Fluid Dynamics) becomes important tool for the prediction on wind effects on the bridge due to the recent development of CFD. The usage of CFD is further prompted by the advantages in using CFD, such as low-cost and fast feed-back of design. In this paper, an unsteady compressible Reynolds averaged Navier-Stokes code is used for the computation of the flow over bridges. Coakley's ��q-${\omega}$ �� two-equation turbulence model is used for the turbulent eddy viscosity. For accurate and stable computations, the local preconditioning method is adapted to the code. Aerodynamic characteristics of a couple bridges are presented to show the validity and the accuracy of the method.

  • PDF

Development of Numerical Model and Experimental Apparatus for Analyzing the Performance of a Ball Valve used for Gas Pipeline in Permafrost Area (극한지 자원이송망 볼밸브 수치모델 및 성능평가장치 개발)

  • Lee, Sang Moon;Jang, Choon Man
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.5
    • /
    • pp.550-559
    • /
    • 2014
  • Hydraulic performance of the 1 inch ball valve have been analyzed based on the three-dimensional Reynolds-averaged Navier-Stokes analysis and an experiment. The experimental test rig of the 1 inch ball valve has been developed to investigate pressure drop for the 1 inch ball valve. The numerical model, which has reliability and effectiveness, has been constructed through the grid dependency test and validation with the results of the experiment. Shear stress transport turbulence model has been used to enhance an accuracy of the turbulence prediction in the pipeline and ball valve, respectively. Effects of the ball valve angle on the flow characteristics and friction performance have been evaluated.

Analysis of the three-dimensional Steady Flow through A Multi-blade Centrifugal Fan (다익송풍기 내부 3차원 정상유동의 수치해석)

  • Seo, Seoung-Jin;Chen, Xi;Kim, Kwang-Yong;Kang, Shin-Hyoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.1 s.6
    • /
    • pp.19-27
    • /
    • 2000
  • A numerical study is presented for analysis of three-dimensional incompressible turbulent flows in a multi-blade centrifugal fan. Reynolds-averaged Navier-Stokes equations with a standard $k-{\espilon}$ turbulence model are discretized with finite volume approximations. The computational area is divided into three blocks; inlet core, impeller and scroll parts, which are linked by a multi-block method. The flow inside of the fan is regarded as steady flow, and the mathematical models for the impeller forces were established from a cascade theory and measured data. Empirical coefficients are obtained comparing between computational and experimental results for the case without scroll, and are employed to simulate the flow through the impeller with scroll. In comparisons with experimental data, the validity of the mathematical models for the impeller forces was examined. The characteristics of the flow in the scroll were also discussed.

  • PDF

Performance Analysis of the Supersonic Nozzle Employed in a Small Liquid-rocket Engine for Ground Firing Test (소형 액체로켓엔진 지상연소시험용 초음속 노즐의 성능해석)

  • Kam, Ho-Dong;Kim, Jeong-Soo;Bae, Dae-Seok;Lee, Jae-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.321-324
    • /
    • 2011
  • A computational analysis of nozzle flow characteristics and plume structure using Reynolds-averaged Navier-Stokes equations with $k-{\omega}$ SST turbulence model was conducted to examine performance of the supersonic nozzle employed in a small liquid-rocket engine for ground firing test. Computed results and experimental outcome of 2-D converging-diverging nozzle flow were compared for verifying the computational capability as well as the turbulence model validity. Numerical computations of 2-D axisymmetric nozzle flow was carried out with the selected model. As a result, flow separation with backflow appeared around the nozzle exit. This investigation was reported as a background data for the optimal nozzle design of small liquid-propellant rocket engine for ground test.

  • PDF

Aerodynamic and Structural Design of 6kW Class Vertical-Axis Wind Turbine (공탄성 변형효과를 고려한 5MW급 풍력발전 블레이드의 피치각에 따른 성능해석)

  • Kim, Yo-Han;Kim, Dong-Hyun;Hwang, Mi-Hyun;Kim, Kyung-Hee;Hwang, Byung-Sun;Hong, Un-Sung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.3
    • /
    • pp.39-44
    • /
    • 2011
  • In this study, performance analyses have been conducted for a 5MW class wind turbine blade model. Advanced computational analysis system based on computational fluid dynamics(CFD) and computational structural dynamics(CSD) has been developed in order to investigate detailed dynamic responsed of wind turbine blade. Reynolds-averaged Navier-Stokes (RANS) equations with K-${\epsilon}$ turbulence model are solved for unsteady flow problems of the rotating turbine blade model. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3D turbine blade for fluid-structure interaction (FSI) problems. Predicted aerodynamic performance considering structural deformation effect of the blade show different results compared to the case of rigid blade model.

A Performance Characteristics of the Thruster Nozzle for Attitude Control of Space Vehicle According to Flight Altitude (우주비행체 자세제어용 추력기 노즐의 비행고도 변이별 추력성능 특성 해석)

  • Kam, Ho-Dong;Choi, Hyun-Ah;Kim, Jeong-Soo;Bae, Dae-Seok;Kim, In-Tae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.167-171
    • /
    • 2012
  • A computational analysis of nozzle flow is conducted to investigate effects of the flight altitude on thrust performance. Reynolds-averaged Navier-Stokes equation with k-${\omega}$ SST(Shear Stress Transport) turbulence model is employed to simulate the nozzle flow in various altitude conditions, where continuum mechanics is to be valid. Thrust performance of the nozzle is exceedingly poor upto 10 km of flight altitude because of the irreversible phenomena such as shock and/or flow separation occurring inside the nozzle, whereas it is restored to the nominal value as the altitude is attained higher than 30 km.

  • PDF

HEAT-TRANSFER ANALYSIS OF A COOLING CHANNEL WITH INCLINED ELLIPTICAL DIMPLES (기울어진 타원형 딤플이 부착된 냉각 유로에 대한 열전달 성능해석)

  • Kim, H.M.;Moon, M.A.;Kim, K.Y.
    • Journal of computational fluids engineering
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • This paper deals with a parametric study on inclined elliptical dimples to enhance heat transfer in a channel. Three-dimensional Reynolds-averaged Naiver-Stokes equations are solved to estimate flow and heat transfer in dimpled channel. As turbulence closure, the low-Re shear stress transport model is employed. Two non-dimensional geometric variables, dimple ellipse diameter ratio and angle of main diameter to flow direction are selected for the parametric study. The inclined elliptical dimples show higher heat-transfer performance but with higher pressure drop compared to the circular dimples. And there is an optimum inclination angle that gives the maximum heat transfer.

Effects of Double Volute on Performance of A Centrifugal Pump (원심펌프의 성능에 대한 더블 볼류트의 영향)

  • Shim, Hyeon-Seok;Heo, Man-Woong;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.1
    • /
    • pp.37-44
    • /
    • 2016
  • In this study, a parametric study of a centrifugal pump with double volute has been performed numerically using three-dimensional Reynolds-averaged Navier-Stokes equations. The shear stress transport model was selected as turbulence closure through turbulence model test. The finite volume method and unstructured grid system were used for the numerical analysis. The optimal grid system in the computational domain was determined through a grid dependency test. The expansion coefficient, circumferential and radial starting positions and length of divider were selected as the geometric parameters to be tested. And, the hydraulic efficiency and the radial thrust coefficient were considered as performance parameters. It was found that the radial thrust and hydrualic efficiency are more sensitive to the expansion angle and circumferential starting position of the divider than the other geometrical parameters.

Investigation on Performance Characteristics of Dual Vertical Axis Turbine of 100 kW Class Tidal Energy Convertor (100 kW급 조류발전용 듀얼 수직축 터빈의 성능특성 연구)

  • HEO, MAN-WOONG;KIM, DONG-HWAN;PARK, JIN-SOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.1
    • /
    • pp.151-159
    • /
    • 2020
  • This study aimed to investigate the performance characteristics of vertical axis turbine of tidal energy convertor. Three-dimensional Reynolds-averaged Navier-Stokes equation with shear stress transport turbulence model has been solved to analyze the fluid flow of the vertical axis turbine. The hexahedral grids have been used to construct the computational domain and the grid dependency test has been performed to find the optimum grid system. Four steps have been carried out to design the vertical axis turbine of the 100 kW class tidal energy convertor.