• 제목/요약/키워드: Reynolds-averaged Navier-Stokes

검색결과 572건 처리시간 0.023초

가스 파이프라인용 볼 밸브의 수치해석 모델 평가 (Evaluation of Numerical Model of a Ball Valve used for a Gas Pipeline)

  • 김철규;이경근;임태균;장춘만
    • 한국수소및신에너지학회논문집
    • /
    • 제27권6호
    • /
    • pp.764-772
    • /
    • 2016
  • This paper presents on the evaluation of numerical analysis model of a ball valve used for a gas pipeline. The ball valve has important role to control the gas flow of the pipeline as well as safety operation to prevent gas explosion at the emergency. For the validation of numerical simulation, the computational domains are introduced three different types: a hexahedron chamber connected to a pipeline outlet without considering the geometry of pressure tubes, a pipeline only considered the geometry of pressure tubes, and a pipeline connected both of the a hexahedron chamber and pressure tubes. The commercial code, SC/Tetra, is introduced to solve the three-dimensional steady-state Reynolds-averaged Navier-Stokes analysis in the present study. The valve flow coefficient and valve loss coefficient with respect to the valve opening rate of 30%, 50%, and 70% are compared with experimental results. Throughout the numerical analysis for the three analysis domains, pressure computed along the pipeline is affected by computational domains. It is noted pressure obtained by the computational model considering both of the a hexahedron chamber and pressure tubes has a relatively good agreement to the experimental data.

Prediction of the turning and zig-zag maneuvering performance of a surface combatant with URANS

  • Duman, Suleyman;Bal, Sakir
    • Ocean Systems Engineering
    • /
    • 제7권4호
    • /
    • pp.435-460
    • /
    • 2017
  • The main objective of this study is to investigate the turning and zig-zag maneuvering performance of the well-known naval surface combatant DTMB (David Taylor Model Basin) 5415 hull with URANS (Unsteady Reynolds-averaged Navier-Stokes) method. Numerical simulations of static drift tests have been performed by a commercial RANS solver based on a finite volume method (FVM) in an unsteady manner. The fluid flow is considered as 3-D, incompressible and fully turbulent. Hydrodynamic analyses have been carried out for a fixed Froude number 0.28. During the analyses, the free surface effects have been taken into account using VOF (Volume of Fluid) method and the hull is considered as fixed. First, the code has been validated with the available experimental data in literature. After validation, static drift, static rudder and drift and rudder tests have been simulated. The forces and moments acting on the hull have been computed with URANS approach. Numerical results have been applied to determine the hydrodynamic maneuvering coefficients, such as, velocity terms and rudder terms. The acceleration, angular velocity and cross-coupled terms have been taken from the available experimental data. A computer program has been developed to apply a fast maneuvering simulation technique. Abkowitz's non-linear mathematical model has been used to calculate the forces and moment acting on the hull during the maneuvering motion. Euler method on the other hand has been applied to solve the simultaneous differential equations. Turning and zig-zag maneuvering simulations have been carried out and the maneuvering characteristics have been determined and the numerical simulation results have been compared with the available data in literature. In addition, viscous effects have been investigated using Eulerian approach for several static drift cases.

Optimization of the anti-snow performance of a high-speed train based on passive flow control

  • Gao, Guangjun;Tian, Zhen;Wang, Jiabin;Zhang, Yan;Su, Xinchao;Zhang, Jie
    • Wind and Structures
    • /
    • 제30권4호
    • /
    • pp.325-338
    • /
    • 2020
  • In this paper, the improvement of the anti-snow performance of a high-speed train (HST) is studied using the unsteady Reynolds-Averaged Navier-Stokes simulations (URANS) coupled with the Discrete Phase Model (DPM). The influences of the proposed flow control scheme on the velocity distribution of the airflow and snow particles, snow concentration level and accumulated mass in the bogie cavities are analyzed. The results show that the front anti-snow structures can effectively deflect downward the airflow and snow particles at the entrance of the cavities and alleviate the strong impact on the bogie bottom, thereby decrease the local accumulated snow. The rotational rear plates with the deflecting angle of 45° are found to present well deflecting effect on the particles' trajectories and force more snow to flow out of the cavities, and thus significantly reduce the accretion distribution on the bogie top. Furthermore, running speeds of HST are shown to have a great effect on the snow-resistance capability of the flow control scheme. The proposed flow control scheme achieves more snow reduction for HST at higher train's running speed in the cold regions.

전진비가 추진기 후류에 미치는 영향 (Effect of the Advance Ratio on the Evolution of Propeller Wake)

  • 백동근;윤현식;정재환;김기섭;백부근
    • 대한조선학회논문집
    • /
    • 제51권1호
    • /
    • pp.1-7
    • /
    • 2014
  • The present study numerically investigated the effect of the advance ratio on the wake characteristics of the marine propeller in the propeller open water test. Therefore, a wide range of the advance ratio(0.2${\kappa}-{\omega}$SST Model are considered. The three-dimensional vortical structures of tip vortices are visualized by the swirl strength, resulting in fast decay of the tip vortices with increasing the advance ratio. Furthermore, to better understanding of the wake evolution, the contraction ratio of the slip stream for different advance ratios is extracted from the velocity fields. Consequently, the slip stream contraction ratio decreases with increasing the advance ratio and successively the difference of the slip stream contraction ratio between J=0.2 and J=0.8 is about 0.1R.

다중 배제분석을 이용한 강원도 내 풍력발전단지 유망후보지 선정 (The Selection of Promising Wind Farm Sites in Gangwon Province using Multi Exclusion Analysis)

  • 박웅식;유능수;김진한;김관수;민덕호;이상우;백인수;김현구
    • 한국태양에너지학회 논문집
    • /
    • 제35권2호
    • /
    • pp.1-10
    • /
    • 2015
  • Promising onshore wind farm sites in Gangwon province of Korea were investigated in this study. Gangwon province was divided into twenty five simulation regions and a commercial program based on Reynolds averaged Navier-Stokes equation was used to find out wind resource maps of the regions. The national wind atlas with a period 2007-2009 developed by Korea institute of energy research was used as climatologies. The wind resource maps were combined to construct a wind resource map of Gangwon province with a horizontal spatial resolution of 100m. In addition to the wind resource, national environmental zoning map, distance from substation, residence and automobile road, Beakdudaegan mountain range, terrain slope, airport and military reservation district were considered to find out promising wind farm sites. A commercial wind farm design program was used to find out developable wind farm capacities in promising wind farm site with and without excluding environmental protection regions. The total wind farm capacities with and without excluding the protection regions were estimated to be 46MW and 598MW, respectively, when a 2MW commercial wind turbine was employed.

사보니우스 소형풍력터빈 수치해석용 격자시스템 평가 (Evaluation of a Grid System for Numerical Analysis of a Small Savonius Wind Turbine)

  • 김철규;이상문;전석윤;윤준용;장춘만
    • 한국수소및신에너지학회논문집
    • /
    • 제27권5호
    • /
    • pp.547-553
    • /
    • 2016
  • This paper presents the effect of a grid system on the performance of a small Savonius wind turbine installed side-by-side. Turbine performance is compared using three different grid systems; tetrahedral grid having a concentrated circular grid around turbine rotors, the tetrahedral grid having a concentrated rectangular grid around turbine rotors and the symmetric grid having a concentrated tetrahedral grid near the turbine rotor blades and a hexahedral grid. The commercial code, SC/Tetra has been used to solve the three-dimensional unsteady Reynolds-averaged Navier-Stokes analysis in the present study. The Savonius turbine rotor has a rotational diameter of 0.226m and an aspect ratio of 1.0. The distance between neighboring rotor tips keeps the same length of the rotor diameter. The variations of pressure and power coefficient are compared with respect to blade rotational angles and rotating frequencies of the turbine blade. Throughout the comparisons of three grid systems, it is noted that the symmetric grid having a concentrated tetrahedral grid near the turbine rotor blades and a hexahedral grid has a stable performance compared to the other ones.

서지성능 향상을 위한 원심압축기의 Bleed Slot Casing의 설계변수에 대한 해석 및 시험 평가 (Numerical and Experimental Study on the Surge Performance Improvement by the Bleed Slot Casing of a Centrifugal Compressor)

  • 김홍원;정재훈;류승협;이근식
    • 한국유체기계학회 논문집
    • /
    • 제18권2호
    • /
    • pp.22-28
    • /
    • 2015
  • The primary design goal of a compressor is focused on improving efficiency. Secondary objective is to widen the operating range of compressor. This paper presents a numerical and experimental investigation of the influence of the bleed slot on the operating range for the 1.2 MW class centrifugal compressor installed in a turbocharger. The main design parameters of the bleed slot casing are upstream slot position, inlet pipe slope, downstream slot position and width. The DOE(design of experiment) method was carried out to optimize the casing design. Numerical analyses were done by the commercial code ANSYS-CFX based on the three dimensional Reynolds-averaged Navier-Stokes equations. Results showed that efficiency and pressure ratio increased as the downstream slot position and width were smaller and the upstream position was located away from the impeller inlet. Experimental works were also done with and without the bleed slot casing. The simulation results were in good agreement with the test data. Enhancement of both the surge margin up to 26.5% and the pressure ratio with the optimized bleed slot design were achieved, compared with the surge margin of only 6.6% without the bleed slot casing.

Optimization of a Single-Channel Pump Impeller for Wastewater Treatment

  • Kim, Joon-Hyung;Cho, Bo-Min;Kim, Youn-Sung;Choi, Young-Seok;Kim, Kwang-Yong;Kim, Jin-Hyuk;Cho, Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • 제9권4호
    • /
    • pp.370-381
    • /
    • 2016
  • As a single-channel pump is used for wastewater treatment, this particular pump type can prevent performance reduction or damage caused by foreign substances. However, the design methods for single-channel pumps are different and more difficult than those for general pumps. In this study, a design optimization method to improve the hydrodynamic performance of a single-channel pump impeller is implemented. Numerical analysis was carried out by solving three-dimensional steady-state incompressible Reynolds-averaged Navier-Stokes equations using the shear stress transport turbulence model. As a state-of-the-art impeller design method, two design variables related to controlling the internal cross-sectional flow area of a single-channel pump impeller were selected for optimization. Efficiency was used as the objective function and was numerically assessed at twelve design points selected by Latin hypercube sampling in the design space. An optimization process based on a radial basis neural network model was conducted systematically, and the performance of the optimum model was finally evaluated through an experimental test. Consequently, the optimum model showed improved performance compared with the base model, and the unstable flow components previously observed in the base model were suppressed remarkably well.

초음속 유동에서 기저유동의 Detached Eddy Simulation (Detached Eddy Simulation of Base Flow in Supersonic Mainstream)

  • 신재렬;문성영;원수희;최정열
    • 한국항공우주학회지
    • /
    • 제37권10호
    • /
    • pp.955-966
    • /
    • 2009
  • 초음속 유동장 내의 축대칭 기저유동에 DES 기법을 적용하였다. 이 기법은 RANS 모드에서는 Spalart-Allmaras (S-A) 난류 모델을 사용하고, Large-eddy simulation (LES) 모드에서는 부격자 모델을 기반으로 하고 있다. LES 보다 비교적 적은 비용을 갖는 DES 기법을 사용하여 기저 유동장과 기저 압력을 정교게 예측할 수 있었다. 기저유동의 정확한 예측을 위해 경계층 두께, 운동량 두께, 표면마찰과 같은 기저 가장자리 유동 물성치를 Dutton 등의 실험과 비교하였다. DES는 하류영역에서의 전단층 말림, 큰 에디 운동, 재순환영역 내의 작은 에디 운동 같은 비정상 난류 운동의 물리적 현상을 잘 모사 하였다. 또한, 경험상수 $C_{DES}$ 1.2를 사용한 현재 결과가 일반적인 경험상수 $C_{DES}$ 0.65에 비해 실험과 잘 일치함을 보여준다.

3차원 수치모형을 이용한 사구발달 수치모의 (Numerical simulation of sand dunes using three-dimensional numerical model)

  • 김형석;박문형
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.281-281
    • /
    • 2017
  • 하천에서 하도불안정(stream instability)으로 인하여 하상의 형태가 변화하고 하상파(sand wave)가 발생한다. 사련(ripple), 사구(dune) 등과 같은 하상파는 흐름저항을 유발하여 홍수시 수위를 증가시킨다. 수리실험 및 수치모형을 이용하여 사련 및 사구의 발달과정 그리고 이를 지나는 난류흐름에 대한 연구가 국외에서는 이루어지고 있지만 국내의 경우 거의 찾아보기 힘들다. 수치모형을 활용한 연구는 주로 횡방향으로 하상파가 일정하다는 가정하에 연직 2차원 수치모형을 적용하였으나 최근 컴퓨터 기술 및 수치기법의 고도화로 3차원 RANS(Reynolds averaged Navier-Stokes) 또는 LES(Large eddy simulation)를 이용한 수치모형이 개발되고 있다. 본 연구에서는 LES에 유사이송 및 하상변동 모형과 결합하여 사구발달에 대한 수치모의를 수행하였다. LES와 유사이송 및 하상변동 모형의 결합은 순간유속성분을 하상변동모형에 직접 적용되기 때문에 난류영향을 고려할 수 있는 것이 장점이다. 특히 사구의 발달에 따라 복잡한 흐름이 발생하며 3차원 와구조가 발생하므로 난류특성의 고려는 필수적이다. 수치모의는 Delft Hydraulics (Bakker et al., 1986)에서 수행한 수리실험 T39를 활용하였다. 수리실험은 길이 100 m, 폭 0.5 m 개수로에서 수행되었으며 평균유속은 0.611 m/s, 수심은 0.436 m이다. 하상파 실험에 사용된 유사입경은 0.78 mm 균일사를 사용하였다. 수치모의 조건은 수리실험과 동일하게 하였으나 계산시간의 효율을 고려하여 흐름방향의 계산영역은 4.0 m로 하고 주기경계조건(periodic boundary condition)을 부여하여 계산을 수행하였다. 수치모의 계산은 사구의 길이 및 파고가 평형상태에 이를 때까지 수행되었다. 수치모의 통해 사구발달에 따른 흐름 및 하상변동 특성을 분석하였다.

  • PDF