• Title/Summary/Keyword: Reynolds numbers

Search Result 639, Processing Time 0.023 seconds

An Effect of Shaft Speed on the Leakage in a Labyrinth Seal (Labyrinth Seal 내 누수량에 미치는 축 회전속도의 영향)

  • 이관수;이상욱;김창호
    • Tribology and Lubricants
    • /
    • v.6 no.2
    • /
    • pp.27-33
    • /
    • 1990
  • Incompressible turbulent flow in a single cavity of the stepped multi-cavity labyrinth seal is numerically analyzed to investigate an effect of the shaft speed on the leakage. SIMPLER algorithm is used to solve governing equations, and low-Reynolds k-$\varepsilon$ turbulence model as outlined by Launder and Sharma is adopted to predict turbulent flow. Pressure drops for the cavity with and without the groove are evaluated for four different Reynolds numbers and three different shaft speeds.

주기 운동하는 마이크로플랩의 효과에 대한 수치적 연구

  • Jeong, Yeon-Gyu;Hyeon, Seong-Yun;Jang, Geun-Sik;Choe, Seong-Uk
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.387-390
    • /
    • 2006
  • Numerical study has been conducted in two dimensions about a NACA0012 airfoil with an oscillating microflap on the surface. We show that this microflap is effective in controlling the unsteady stall at high angles of attack. We solve the compressible Navier-Stokes equations for the Reynolds numbers with an extensible chimera grid fitted to the oscillatory microflap. For turbulent calculation, we adopt the SST $k-{\omega}$ model. We investigate the parametric effect of angle of attacks, Reynolds number, and the location where the microflap is installed.

  • PDF

Turbulent Heat Transfer of an Oblique Impinging Jet on a Concave Surface (오목표면에 분사되는 경사충돌제트의 난류열전달 현상에 관한 연구)

  • 임경빈;최형철;이세균;최상경;김학주
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.4
    • /
    • pp.371-380
    • /
    • 2000
  • The turbulent heat transfer from a round oblique impinging jet on a concave surface were experimentally investigated. The transient measurement method using liquid crystal was used in this study. In this measurement, a preheated wall was suddenly exposed to an impinging jet while recording the response of liquid crystals to measure surface temperature. The Reynolds numbers were 11000, 23000 and 50000, nozzle-to-surface distance ratio was from 2 to 10 and the surface angles were a =$0^{\circ}\;15^{\circ},\;30^{\circ}and\;40^{\circ}$. Correlations of the stagnation point Nusselt numbers with Reynolds number, jet-to-surface distance ratio and dimensionless surface angle, which account for the surface inclined angle, are presented. The maximum Nusselt numbers, in this experiment, occurred in the direction of upstream. The displacement of the maximum Nusselt number from the stagnation point increases with increasing surface angle or decreasing nozzle-to-surface distance. In this experiment, the maximum displacement is about 0.7 times of the jet nozzle diameter when surface curvature, D/d is 10.

  • PDF

Heat Transfer Characteristics of a Pulsating Impinging Jet (맥동충돌제트의 열전달 특성)

  • Lee, Eun-Hyun;Lee, Dae-Hee;Lee, Joon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.903-910
    • /
    • 2002
  • The present study aims to investigate the heat transfer characteristics of a pulsating axisymmetric air jet impinging on a heated wall. An axisymmetric contraction nozzle is used to obtain uniform profiles for the mean velocity and turbulence intensity at the nozzle exit. Measurements of the time averaged temperature on the impingement surface are conducted using a Thermochrornatic Liquid Crystal(TLC) technique for steady and pulsating jets at the jet Reynolds numbers of 20000, 30000 and 40000. Considered are pulsation frequencies of 10 and 20 Hz, corresponding to Strouhal numbers below 0.06 based on nozzle width and jet discharge velocity. In addition, the effect of nozzle-to-plate distances in the range of 2 to 10 on heat transfer characteristics is assessed. The pulsating impinging jet provides more uniform heat transfer coefficient near the impingement region, irrespective of H/D. Based on the measured data, a good correlation as a function of the jet Reynolds and Nusselt numbers is reported. It is also found that an exponent m in the relation of Nu ${\propto}\;Re^m$ depends on both r/D and H/D, by which the impinging jet flows are highly affected.

A Study on Wave Run-up Height and Depression Depth around Air-water Interface-piercing Circular Cylinder

  • Koo, Bon-Guk;Park, Dong-Woo;Paik, Kwang-Jun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.3
    • /
    • pp.312-317
    • /
    • 2014
  • In this paper, the wave run-up height and depression depth around air-water interface-piercing circular cylinder have been numerically studied. The Reynolds Averaged Navier-Stokes equations (RANS) and continuity equations are solved with Reynolds Stress model (RSM) and volume of fluid (VOF) method as turbulence model and free surface modeling, respectively. A commercial Computational Fluid Dynamics (CFD) software "Star-CCM+" has been used for the current simulations. Various Froude numbers ranged from 0.2 to 1.6 are used to investigate the change of air-water interface structures around the cylinder and experimental data and theoretical values by Bernoulli are compared. The present results showed a good agreement with other studies. Kelvin waves behind the cylinder were generated and its wave lengths are longer as Froude numbers increase and they have good agreement with theoretical values. And its angles are smaller with the increase of Froude numbers.

Study on the Optimization of Absorption Performance of the Vertical Tube Absorber with Falling Film (수직 액막형 흡수기의 성능 최적화에 관한 연구)

  • Kim, Jung-Kuk;Cho, Keum-Nam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.9
    • /
    • pp.830-838
    • /
    • 2005
  • The present study investigated the optimization of the absorption performance of the vertical absorber tube with falling film by considering heat and mass transfer simultaneously. Effects of film Reynolds number, geometric parameters by insert device (spring) and flow pattern on heat and mass transfer performances have been also investigated. Especially, effects of coolant flow rate and the flow pattern by geometric parameters has been observed for the total heat and mass transfer rates through both numerical and experimental studies. Based on both predicted values, the optimal coolant flow rate was predicted as 1.98 L/min. The maximum absorption rate of the spring inserted tube was increased by the maximum of $20.0\%$ than those for uniform film of bare tube. Average Sherwood numbers and Nusselt numbers were increased as Reynolds numbers increased under the dynamic and geometric conditions showing the maximum absorption performance.