• 제목/요약/키워드: Reynolds numbers

검색결과 639건 처리시간 0.028초

좁은 환기구를 가진 사각공간에서의 혼합대류 열전달 (Mixed Convection Heat Transfer in a Rectangular Enclosure with Various Outlets)

  • 이철재;정한식;권순석
    • 설비공학논문집
    • /
    • 제7권2호
    • /
    • pp.207-216
    • /
    • 1995
  • Flow and heat transfer characteristics of mixed convection heat transfer in a rectangular en-closure with various outlets are numerically investigated. The parameters considered here include Reynolds number, Grashof number and the position of outlet. The results show streamlines, isotherms, Nusselt numbers, velocity and temperature distributions. It has been shown that as Reynolds number increases, the size of cell decreases at Re$\leq$100 and increases at Re>100 for $Gr=10^4$. There is a minimum size of cells at Re=100, $Gr=10^4$. The maximum mean Nusselt number occurs at Re=400, $Gr=10^4$ and one right outlet. The mean Nusselt numbers can be formulated by the correlation equation $Nu=C{\cdot}Gr^a{\cdot}Re^b$.

  • PDF

수직으로 엇갈린 등온평판에서의 혼합대류 열전도 (Mixed Convection Heat Transfer from Vertically Misaligned Isothermal plates)

  • 권순석;김상영;박순업
    • 한국해양공학회지
    • /
    • 제6권1호
    • /
    • pp.52-61
    • /
    • 1992
  • The steady laminar mixed convection from vertically misaligned, isothermal plastes has been studied by numerical procedure. The governing equations are solved by the finite difference method using successive using successive over relaxation scheme at Re=100-800, $Gr=10^3-10^6$, Pr=0.71 and dimensionless plate spacings b/L=0.1-1.0. The plume interaction caused by the thermal interference of twoplates is observed. As Reynolds numbers increase, the optimum plate spacings are moved to narrow spacings at the same Grashof number and as Grashof numbers increase, to wide spacings at the same Reynolds number.

  • PDF

연소실에 분사된 액적 간의 상호작용과 연소현상에 대한 수치적 연구 (A Numerical Study on Interaction and Combustion of Droplets Injected into a Combustor)

  • 국정진;박승호
    • 한국연소학회지
    • /
    • 제4권1호
    • /
    • pp.17-26
    • /
    • 1999
  • Vaporization, ignition and combustion of fuel droplets in tandem array are theoretically investigated to understand the droplet interactions in combustors. Including the effects of density variation in gas-phase, internal circulation and transient liquid heating, a numerical studies are performed by changing parameters such as initial droplet temperatures, initial droplet spacings, initial Reynolds numbers, surrounding gas temperatures, and activation energies of fuel vapors. Combustion regime maps classify the droplet combustion phenomena according to the configuration and location of the flame with respect to injection Reynolds numbers and surrounding gas temperatures. In addition, it is shown that the dynamic histories of droplets and ignition delay times are dependent on droplet size ratios and initial spacings of tandem droplets.

  • PDF

곤충과 새의 비행방법 (How Birds and Insects Fly)

  • 홍영선
    • 한국군사과학기술학회지
    • /
    • 제10권1호
    • /
    • pp.130-143
    • /
    • 2007
  • Using steady state aerodynamic theories, it has been claimed that insects and birds cannot fly. To make matters worse, insects and birds fly at low Reynolds numbers. Therefore, a recurring theme in the literature is the importance of understanding unsteady aerodynamic effect and how the vortices behave when they separate from the moving surface that created them. In flapping flight, birds and insects can modify wing beat amplitude, stroke angle, wing planform area, angle of attack, and to a lesser extent flapping frequency to optimize the generation of lift force. Some birds are thought to employ two different gaits(a vortex ring gait and a continuous vortex gait) and unsteady aerodynamic effect(Clap and fling, Delayed stall, Wake capture and Rotational Circulation) in flapping flight. Leading edge vortices may produce an increase in lift. The trailing edge vortex could be an important component in gliding flight. Tip vortices in hovering support the body weight of the hummingbirds. Thus, this study investigated how insects and birds generate lift at low Reynolds numbers. This research is written to further that as yet incomplete understanding.

바탕회전하에 회전요동하는 직사각형용기 내의 유동에 관한 연구 (Study on Fluid Flows in a Rectangular Container Subjected to a Background Rotation and a Rotational Oscillation)

  • 박재현;서용권
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.215-219
    • /
    • 2002
  • In this study, we show the numerical and the experimental results for fluid motions inside a rectangular container subjected to a background rotation added by a rotational oscillation. In the numerical computation, we used a parallel computer system of PC-cluster type. Attention is given to dependence of the flow patterns on the parameter change. It shows that the flow becomes in a periodic state at low Reynolds numbers and undergoes a transition to a chaotic motion at high Reynolds numbers. It also shows that the fluid motion tends to be depth-independent at ${\epsilon}$ up to 0.3 for Re lower than 5235.

  • PDF

Vortex-Induced Vibrations of a Circular Cylinder at Low Reynolds Numbers

  • Lee, Minhyung;Lee, Sung-Yeoul
    • Journal of Mechanical Science and Technology
    • /
    • 제17권11호
    • /
    • pp.1628-1637
    • /
    • 2003
  • The vortex-induced vibrations of a circular cylinder at low Reynolds (Re) numbers are simulated by applying a method of the two-dimensional computational fluid dynamics coupled with the structural dynamics based on the multi-physics. The fluid solver is first tested on the case of a fixed cylinder at Re$\leq$160, and shows a good agreement with the previous high-resolution numerical results. The present study then reports on the detailed findings concerning the vibrations of an elastic cylinder with two degrees of translational freedom for a number of cases in which Re is fixed at 200, a reduced damping parameter Sg=0.01, 0.1, 1.0, 10.0 and the mass ratio M$\^$*/ = 1, 10.

구속된 단일 회전원판과 동시 회전원판 내부의 유동 특성 (Flow Characteristics in a Cavity Due to a Single Rotating Disk and Co-Rotating Disks)

  • 원정호;류규영;조형희
    • 대한기계학회논문집B
    • /
    • 제23권9호
    • /
    • pp.1192-1200
    • /
    • 1999
  • The present study investigates flow characteristics in a cavity with one rotating disk and co-rotating disks for application to HDD. The experiments are conducted for rotating Reynolds numbers of $5.5{\times}104$ to $1.10{\times}105$ and for gap ratios of 0.059 to 0.175 in a single rotating and 0.047 to 0.094 in co-rotating disk. Time-resolved velocity components and turbulence intensity on the rotating disks are obtained by using LDA measurements. Detailed Knowledge of the flow characteristics is essential to analyze flow vibration and heat transfer and to design head-arm assembly and hub height in HDD. The results indicate that the velocity field in HDD is changed largely by the rotating Reynolds numbers and hub height of the disk.

반원호 주위를 흐르는 점성류의 수치계산 (Viscous flow calculation past a semicircular arc)

  • 전지수;최도형;김문언
    • 대한기계학회논문집
    • /
    • 제12권4호
    • /
    • pp.916-925
    • /
    • 1988
  • 본 연구에서는 이에 대한 현상을 이해하기 위한 노력의 일환으로 반원호가 유 동방향에 오목하게 놓여있는 경우와 볼록하게 놓여있는 두 특수한 경우에 대해 Re수를 0.1부터 50까지 증가시켜가며 수치해를 구하여 박리점, 와류길이, 그리고 와도와 유선 들을 중점적으로 조사하였다.

등온 수직 평판에서의 혼합대류 열전달 (Mixed convection from two isothermal, vertical, parallel plates)

  • 박문길;이재신;양성환;권순석
    • 대한기계학회논문집
    • /
    • 제14권6호
    • /
    • pp.1645-1651
    • /
    • 1990
  • 본 연구에서는 두 개의 수직 등온 평판이 평행하게 배열된 경우의 혼합대류 열전달에 대하여 무차원 평판 간격, b/l와 Grashof수, 레이놀즈수를 변수로 유한차분 법을 사용 수치해석하고, 두평판사잉의 간섭현상과 열전달을 최대로 하는 최적 평판간 격을 구하였다.

초음속 마이크로 제트 유동에 관한 기초적 연구 (A Fundamental Study of the Supersonic Microjet)

  • 정미선;김현섭;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.622-627
    • /
    • 2001
  • Microjet flows are often encountered in many industrial applications of micro-electro-mechanical systems as well as in medical engineering fields such as a transdermal drug delivery system for needle-free injection of drugs into the skin. The Reynolds numbers of such microjets are usually several orders of magnitude below those of larger-scale jets. The supersonic microjet physics with these low Reynolds numbers are not yet understood to date. Computational modeling and simulation can provide an effective predictive capability for the major features of the supersonic microjets. In the present study, computations using the axisymmetic, compressible, Navier-Stokes equations are applied to understand the supersonic microjet flow physics. The pressure ratio of the microjets is changed to obtain both the under- and over-expanded flows at the exit of the micronozzle. Sonic and supersonic microjets are simulated and compared with some experimental results available. Based on computational results, two microjets are discussed in terms of total pressure, jet decay and supersonic core length.

  • PDF