• Title/Summary/Keyword: Reynolds Stress

Search Result 517, Processing Time 0.018 seconds

Prediction of Turbulent Boundary Layers on Convex Surfaces with Reynolds Stress Closure Model (레이놀즈응력모델을 사용한 곡면상의 난류경계층에 대한 수치해석)

  • 김광용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.5
    • /
    • pp.1717-1726
    • /
    • 1991
  • 본 연구에서는 낮은 레이놀즈수 영역에도 적용될 수 있는 레이놀즈응력모델의 개발을 위해, 우선 벽근처 영역에서 사용되는 실험식(벽법칙)을 Hassid와 Poreh에 의 해 개발된 1-방정식모델로 대체하고 이를 레이놀즈응력모델과 접속시키는 방식을 사용 하였다. Hassid-Poreh의 1-방정식모델은 이미 Gibson등에 의해 그 성능이 평가되어 압력구배가 크지 않은 경계층유동의 낮은 레이놀즈수 영역에서 매우 좋은 결과를 보여 줌이 밝혀졌다. 본 연구에서는 곡면위의 난류경계층에 대해 위에서 설명한 바 있는 난류모델을 적용함에 있어 Gillis등과 Gibson등에 의해 실험된, 각각 곡률이 큰 경우 와 작은 경우의 대표적인 유동을 선택하여 모델의 성능을 시험하였다. 1-방정식모델 내에 포함된 길이차원(length scale)에 대해서는 곡률을 고려한 수정이 이루어졌다.

Numerical Analysis of Turbulent Flow and Heat Transfer in a Rectangular Duct with a 180° Bend Degree (직사각단면을 갖는 180°곡관내의 난류 유동및 열전달에 관한 수치해석적 연구)

  • Choi, Y.D.;Moon, C.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.4
    • /
    • pp.325-336
    • /
    • 1994
  • A numerical simulation of velocity and temperature fields and Nusselt number distributions is performed by using the algebraic stress model (ASM) for the velocity profiles and low Reynolds number ${\kappa}-{\varepsilon}$ model and the algebraic heat flux model(AHFM) for turbulent heat transfer in a $180^{\circ}$ bend with a constant wall heat flux. In the low Reynolds number ${\kappa}-{\varepsilon}$ model, turbulent Prandtl number is modified by considering the streamline curvature effect and the non-equilibrium effect between turbulent kinetic energy production and dissipation rate. Every heat flux term presented in the transport equation of turbulent heat flux is reduced to algebraic expressions in a way similar to algebraic stress model. Also. in the wall region, low Reynods number algebraic heat flux model(AHFM) is applied.

  • PDF

Experimental Investigation on the Flow in Concentric Annuli with Both Rough Walls (내·외벽에 거칠기가 있는 이중동심관 유동에 대한 실험적 연구)

  • Ahn, S.W.;Jung, Y.B.;Kim, K.C.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.1
    • /
    • pp.81-88
    • /
    • 1995
  • Fully developed turbulent flow through three concentric annuli with both the rough inner and outer walls was experimentally investigated for a Reynolds number range Re=15,000-85,000. Measurements were made of the pressure drop, the positions of zero shear stress and maximum velocity, and the velocity distributions in annuli of radius ratios, ${\alpha}=0.26$, 0.4 and 0.56, respectively. The experimental results showed that the positions of zero shear streess and maximum velocity were only weakly dependent on the Reynolds number. It was also found that the position of zero shear stress was not coincident with that of maximum velocity. Furthmore, the former was influenced more sensitively than the latter on the square-ribbed roughness along the axial direction.

  • PDF

On the Origin of the Tsushima Current (I) : Barotropic Case (대마해류의 기원에 대하여 (I) : 순압인 경우)

  • PANG Ig-Chan;KIM Tae-Hee;MATSUNO Takeshi;RHO Hong-Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.26 no.6
    • /
    • pp.580-593
    • /
    • 1993
  • The Tsushima Current has been known to branch out from the Kuroshio west of Kyushu and to flow north to the Korea Strait. Then, it has to flow across the isobaths and so needs some driving forces. As the forces, sea level difference between the Korea and Tsugaru Straits, Reynolds stress west of Kyushu and density differences have been suggested, In this paper, their roles have been numerically studied in the barotropic case. Model results show that the Tsushima Current is possible without any above force. The flows just follow isobaths over the East China Sea. They seem to be driven by their own dynamics without any external force. The mechanism is just like outflows from a gap. Model results also show that the flows in this area could be significantly affected by the external forces such as Reynolds Stress. Then the dynamics and flows in real ocean might be complicated. However, the barotropic study tells us that the Tsuahima Currents is basically driven by geostrophic adjustment.

  • PDF

Numerical Analysis of Tip Vortex and Cavitation of Elliptic Hydrofoil with NACA 662-415 Cross Section (NACA 662-415 단면을 가지는 타원형 수중익의 날개 끝 보오텍스 및 캐비테이션 수치해석)

  • Park, Il-Ryong;Kim, Je-in;Seol, Han-Sin;Kim, Ki-Sup;Ahn, Jong-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.244-252
    • /
    • 2018
  • This paper provides quantification of the effects of the turbulence model and grid refinement on the analysis of tip vortex flows by using the RANS(Reynolds averaged Navier-Stokes) method. Numerical simulations of the tip vortex flows of the NACA $66_2$-415 elliptic hydrofoil were conducted, and two turbulence models for RANS closure were tested, i.e., the Realizable $k-{\varepsilon}$ model and the Reynolds stress transport model. Numerical results were compared with available experimental data, and it was shown that the data for the Reynolds stress transport model that were computed on the finest grid system had better agreement in reproducing the development and propagation of the tip vortex. The Realizable $k-{\varepsilon}$ model overestimated the turbulence level in the vortex core and showed a diffusive behavior of the tip vortex. The tip vortex cavitation on the hydrofoil and its trajectory also showed good agreement between the current numerical results that were obtained using the Reynolds stress transport model and the results observed in the experiment.

A numerical study of a confined turbulent wall jet with an external stream

  • Yan, Zhitao;Zhong, Yongli;Cheng, Xu;McIntyre, Rory P.;Savory, Eric
    • Wind and Structures
    • /
    • v.27 no.2
    • /
    • pp.101-109
    • /
    • 2018
  • Wall jet flow exists widely in engineering applications, including the simulation of thunderstorm downburst outflows, and has been investigated extensively by both experimental and numerical methods. Most previous studies focused on the scaling laws and self-similarity, while the effect of lip thickness and external stream height on mean velocity has not been examined in detail. The present work is a numerical study, using steady Reynolds-Averaged Navier Stokes (RANS) simulations at a Reynolds number of $3.5{\times}10^4$, of a turbulent plane wall jet with an external stream to investigate the influence of the wall jet domain on downstream development of the flow. The comparisons of flow characteristics simulated by the Reynolds stress turbulence model closure (Stress-omega, SWRSM) and experimental results indicate that this model may be considered reasonable for simulating the wall jet. The confined wall jet is further analyzed in a parametric study, with the results compared to the experimental data. The results indicate that the height and the width of the wind tunnel and the lip thickness of the jet nozzle have a great effect on the wall jet development. The top plate of the tunnel does not confine the development of the wall jet within 200b of the nozzle when the height of the tunnel is more than 40b (b is the height of jet nozzle). The features of the centerline flow in the mid plane of the 3D numerical model are close to those of the 2D simulated plane wall jet when the width of the tunnel is more than 20b.

Turbulence in temporally decelerating pipe flows (시간에 대해 감속하는 난류 파이프 유동에 관한 연구)

  • Jeong, Wongwan;Lee, Jae Hwa
    • Journal of the Korean Society of Visualization
    • /
    • v.14 no.1
    • /
    • pp.46-50
    • /
    • 2016
  • Direct numerical simulations (DNSs) of turbulent pipe flows with temporal deceleration were performed to examine response of the turbulent flows to the deceleration. The simulations were started with a fully-developed turbulent pipe flow at the Reynolds number, $Re_D=24380$, based on the pipe radius and the laminar centerline velocity, and three different constant temporal decelerations were applied to the initial flow with varying dU/dt = -0.001274, -0.00625 and -0.025. It was shown that the mean flows were greatly affected by temporal decelerations with downward shift of log law, and turbulent intensities were increased in particular in the outer layer, compared to steady flows at a similar Reynolds number. The analysis of Reynolds shear stress showed that second- and fourth-quadrant Reynolds shear stresses were increased with the decelerations, and the increase of the turbulence was attributed to enhancement of outer turbulent vortical structures by the temporal decelerations.

Numerical Analysis of Flow and Pollutant Dispersion over 2-D Bell Shaped Hills

  • Jung, Young-Rae;Park, Keun;Park, Warn-Gyu;Park, Ok-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.7
    • /
    • pp.1054-1062
    • /
    • 2003
  • The numerical simulations of flow and pollutant particle dispersion are described for two-dimensional bell shaped hills with various aspect ratios. The Reynolds-averaged incompressible Navier-Stokes equations with low Reynolds number $\kappa$-$\varepsilon$ turbulent model are used to simulate the flowfield. The gradient diffusion equation is used to solve the pollutant dispersion field. The code was validated by comparison of velocity, turbulent kinetic energy, Reynolds shear stress, speed-up ratio, and ground level concentration with experimental and numerical data. Good agreement has been achieved and it has been found that the pollutant dispersion pattern and ground level concentration have been strongly influenced by the hill shape and aspect ratio, as well as the location and height of the source.

Suppression of Turbulence in a Circular Jet Using a Single Frequency Excitation (단일 주파수 가진을 이용한 원형 제트의 난류 억제)

  • Park Jeongyoung;Choi Haecheon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.241-244
    • /
    • 2002
  • Large eddy simulation of a circular jet at the Reynolds number of 10000 is performed to investigate turbulence suppression effect with single frequency excitation at the non-dimensional frequency of 0.017. Instantaneous flow fields show that, with excitation, naturally occurring energetic vortices are suppressed through earlier saturation and breakdown of the shear layer vortices into fine grained turbulence. Due to the excitation, the Reynolds stresses are larger for the excited case near the jet and turbulence suppression begins afterward. The Reynolds normal stresses show largest suppression in the shear layer near the jet and in the centerline further downstream, while the Reynolds shear stress shows largest suppression in the shear layer at all the downstream locations.

  • PDF

Flow Visualization of an Unsteady Airfoil at Low Reynolds Numbers (저 레이놀즈수에서 비정상 에어포일의 흐름 가시화)

  • Kim, Dong-Ha;Chang, Jo-Won
    • Journal of the Korean Society of Visualization
    • /
    • v.4 no.2
    • /
    • pp.51-58
    • /
    • 2006
  • A boundary layer visualization was carried out in order to investigate the influence of Reynolds number on an oscillating airfoil. An NACA 0012 airfoil is sinusoidally pitched at the quarter chord point with oscillation amplitude of ${\pm}6^{\circ}$. A smoke-wire technique was employed to visualize the boundary layer and the near-wake. The freestream velocities are 1.98, 2.83 and 4.03m/s and corresponding chord Reynolds numbers are $2.3{\times}10^4,\;3.3{\times}10^4$, and $4.8{\times}10^4$, respectively. As the reduced frequency of K=0.1 is fixed, the corresponding frequency of an airfoil was adjusted in each case. The results reveal that the point at which the shear stress in an unsteady boundary layer separation disappears does not correspond with the position of the breakdown of the boundary layer, and that the breakdown of the boundary layer occurs further downstream.

  • PDF