• Title/Summary/Keyword: Reynolds Shear Street

Search Result 4, Processing Time 0.019 seconds

Turbulent Flow Field Structure of Initially Asymmetric Jets

  • Kim, Kyung-Hoon;Kim, Bong-Whan;Kim, Suk-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.12
    • /
    • pp.1386-1395
    • /
    • 2000
  • The mear field structure of round turbulent jets with initially asymmetric velocity distributions is investigated experimentally. Experiments are carried out using a constant temperature hot-wire anemometry system to measure streamwise velocity in the jets. The measurements are undertaken across the jet at various streamwise stations in a range starting from the jet exit plane and up to a downstream location of twelve diameters. The experimental results include the distributions of mean and instantaneous velocities, vorticity field, turbulence intensity, and the Reynolds shear stresses. The asymmetry of the jet exit plane was obtained by using circular cross-section pipes with a bend upstream of the exit. There pipes used here include a straight pipe, and 90 and 160 degree-bend pipes. Therefore, at the upstream of the upstream of the pipe exit, secondary flow through the bend mean streamwise velocity distribution could be controlled by changing the curvature of pipes. The jets into the atmosphere have two levels of initial velocity skewness in addition to an axisymmetric jet from a straight pipe. In case of the curved pipe, a six diameter-long straight pipe section follows the bend upstream of the exit. The Reynolds number based on the exit bulk velocity is 13,400. The results indicate that the near field structure is considerably modified by the skewness of an initial mean velocity distribution. As the skewness increases, the decay rate of mean velocity at the centerline also increases.

  • PDF

The effect of Reynolds number on the elliptical cylinder wake

  • Shi, Xiaoyu;Alam, Md. Mahbub;Bai, Honglei;Wang, Hanfeng
    • Wind and Structures
    • /
    • v.30 no.5
    • /
    • pp.525-532
    • /
    • 2020
  • This work numerically investigates the effects of Reynolds number ReD (= 100 - 150), cross-sectional aspect ratio AR = ( 0.25 -1.0), and attack angle α (= 0° - 90°) on the forces, Strouhal number, and wake of an elliptical cylinder, where ReD is based on the freestream velocity and cylinder cross-section height normal to the freestream flow, AR is the ratio of the minor axis to the major axis of the elliptical cylinder, and α is the angle between the cylinder major axis and the incoming flow. At ReD = 100, two distinct wake structures are identified, namely 'Steady wake' (pattern I) and 'Karman wake followed by a steady wake (pattern II)' when AR and α are varied in the ranges specified. When ReD is increased to 150, an additional wake pattern, 'Karman wake followed by secondary wake (pattern III)' materializes. Pattern I is characterized by two steady bubbles forming behind the cylinder. Pattern II features Karman vortex street immediately behind the cylinder, with the vortex street transmuting to two steady shear layers downstream. Inflection angle αi = 32°, 37.5° and 45° are identified for AR = 0.25, 0.5 and 0.75, respectively, where the wake asymmetry is the greatest. The αi effectively distinguishes the dependence on α and AR of force and vortex shedding frequency at either ReD. In Pattern III, the Karman street forming behind the cylinder is modified to a secondary vortex street. At a given AR and α, ReD = 150 renders higher fluctuating lift and Strouhal number than ReD = 100.

The near wake of three circular cylinders in an equilateral triangular arrangement at a low Reynolds number Re=100

  • Bai, Honglei;Lin, Yufeng;Alam, Md. Mahbub
    • Wind and Structures
    • /
    • v.30 no.5
    • /
    • pp.451-463
    • /
    • 2020
  • Two-dimensional numerical simulations are conducted at a low Reynolds number Re = 100 to investigate the near wake of three identical circular cylinders that are arranged in an equilateral triangular configuration. The incident angle of the three-cylinder configuration with respect to incoming flow is varied from θ = 0° to 60°, while the spacing between adjacent cylinders (L) covers a wide range of L/D = 1.25-7.0, where D is diameter of the cylinder. Typical flow structures in the near wake of the three-cylinder configuration are identified, including a single Karman vortex street, bistable flip-flopping near wake, anti-phase and/or in-phase vortex shedding, shear layer reattachment, and vortex impingement, depending on the configuration (L/D, θ). The behavior of Strouhal number (St) is discussed in detail, echoing the distinct structures of near wake. Furthermore, fluid forces on the individual cylinders are examined, which, though highly depending on (L/D, θ), exhibit a close correlation to the near wake behavior.

NUMERICAL FLOW VISUALIZATION ANALYSIS AROUND AN OSCILLATING SQUARE CYLINDER (정사각봉의 진동에 의한 유동해석)

  • Ju, M.K.;Ajith Kumar, R.;Sohn, C.H.;Gowda, R.H.L.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.115-119
    • /
    • 2007
  • In this paper, a flow visualization analysis has been carried out on an oscillating square section cylinder, numerically, using a commercially available code CFD-ACE. In this study, the square cylinder is forced to oscillate at different frequencies of excitation, viz., fe/fo=0.5, 1.0 and 2.0 (where, fe is the excitation frequency provided to the cylinder and fo is the natural vortex shedding frequency from the stationary cylinder at a particular Reynolds number (=5200). In all the cases, the peak-to-peak amplitude of oscillation is kept at 32% of the side dimension of the square cylinder. These studies are conducted to understand the influence of frequency of oscillation on the flow field features around the cylinder, particularly the mode of vortex shedding. Results indicate that, the flow field around a square cylinder is very much influenced by the excitation frequency, in particular the vortex shedding mode. It is also found that, the vortex street parameters are significantly influence by the oscillation frequency. Comparison with earlier reported experimental studies has also been attempted in this paper. In appears that, such a numerical exercise (as performed in this paper) is first of its kind. It is believed that, these studies would enable one to understand the mechanisms underlying the flow-induced vibrations of a square section cylinder.

  • PDF