• 제목/요약/키워드: Reynolds Boundary Condition

검색결과 154건 처리시간 0.033초

그루브의 Trap 효과에 대한 CFD 해석: 제 1부 − 그루브 단면 형상의 변화 (CFD Analysis of Trap Effect of Groove in Lubricating Systems: Part I - Variation in Cross-Sectional Shape of Groove)

  • 홍성호
    • Tribology and Lubricants
    • /
    • 제32권3호
    • /
    • pp.101-105
    • /
    • 2016
  • Trap effect of groove is evaluated in a lubricating system using computational fluid dynamics (CFD) analysis. The simulation is based on the standard k-ε turbulence model and the discrete phase model (DPM) using a commercial CFD code FLUENT. The simulation results are also capable of showing the particle trajectories in flow field. Computational domain is meshed using the GAMBIT pre-processor. The various grooves are applied in order to improve lubrication characteristics such as reduction of friction loss, increase in load carrying capacity, and trapping of the wear particles. Trap effect of groove is investigated with variations in cross-sectional shape and Reynolds number in this research. Various cross-sectional shapes of groove (rectangular, triangle, U shaped, trapezoid, elliptical shapes) are considered to evaluate the trap effect in simplified two-dimensional sliding bearing. The particles are assumed to steel, and defined a single particle injection condition in various positions. The “reflect” boundary condition for discrete phase is applied to the wall boundary, and the “escape” boundary condition to “pressure inlet” and “pressure outlet” conditions. The streamlines are compared with particles trajectories in the groove. From the results of numerical analysis in the study, it is found that the cross-sectional shapes favorable to the creation of vortex and small eddy current are effective in terms of particle trapping effect. Moreover, it is found that the Reynolds number has a strong influence on the pattern of vortex or small eddy current in the groove, and that the pattern of the vortex or small eddy current affects the trap effect of the groove.

사각용기에서 발생하는 고점성 유체의 슬로싱 유동 (Sloshing Flow of Highly-Viscous Fluid in a Rectangular Box)

  • 박준상
    • 한국가시화정보학회지
    • /
    • 제17권3호
    • /
    • pp.39-45
    • /
    • 2019
  • A study on the sloshing flow of highly-viscous fluid in a rectangular box was made by both of theoretical approach and experimental visualization method. Assuming a smallness of external forcing to oscillate the container, it was investigated a linear sloshing flow of highly-viscous fluid utilizing asymptotic analysis by Taylor-series expansion as a small parameter Re (≪1) in which Re denotes Reynolds number. The theory predict that, during all cycles of sloshing, a linear shape of free surface will prevail in a bulk zone and it has confirmed in experiment. The relevance of perfect slip boundary condition, adopted in theoretical approach, to the bulk zone flow at the container wall was tested in experiment. It is found that quasi-steady coated thin film, which makes a lubricant layer between bulk flow and solid wall, is generated on the wall and the film makes a role to perfect slip boundary condition.

구동류를 갖는 입방형 캐비티의 유동특성에 관한 연구 (A Study on the Flow Characteristics of Cubic Cavity with driven Flow)

  • 최민선
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권6호
    • /
    • pp.935-941
    • /
    • 1998
  • Experiments were carried out for a cubic cavity flow. Contrinuous shear stress is supplied by driven flow for high Reynolds number and three kinds of aspect ratios. Velocity vectors are obtained by PIV and they are used as velocity components for Poisson equation for pressure, Related boundary conditions and no-slip condition at solid wall and the linear velocity extrapolation on the upper side of cavity are well examined for the present study. For calculation of pressure resolution of grid is basically $40{\times}40$ and 2-dimensional uniform mesh using MSC staggered grid is adopted. The flow field within the cavity maintains a forced-vortex formation and almost of the shear stress from the driving inflow is transformed into rotating flow energy and the size of the distorted forced-vortex increases with increment of Reynolds number

  • PDF

DES 모형을 이용한 270도 곡관 내 난류유동에 관한 수치해석 (Numerical investigation of Turbulent Flow in $270^{\circ}$ Bend using DES approaches)

  • 서정식;신종근;홍성호;최영돈
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.558-563
    • /
    • 2007
  • Detached Eddy Simulation(DES) is performed for turbulent flow of the $270^{\circ}$ bend at a Reynolds number of 56,690. A Fine grid generation is used near a wall in order to satisfy the wall boundary condition of y+<1. Turbulence models adopted for DES and Reynolds Average Navier Stokes(RANS) simulation are SST(Shear Stress Transfort) model. Solutions for both streamwise and circumferential velocity components are compared with the experimental data by Lee for $270^{\circ}$ bend and by Chang for $180^{\circ}$ bend.

  • PDF

다공성 벽면(porous-wall)과 거칠기가 있는 벽면(rough-wall)에 과한 경계조건을 이용한 초음속 흐름의 수치모사 (NUMERICAL SIMULATION OF SUPERSONIC FLOW USING POROUS AND ROUGH WALL BOUNDARY CONDITIONS)

  • 곽인근;유일용;이승수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.104-111
    • /
    • 2009
  • The existing code which solves two-dimensional RANS(Reynolds Averaged Navier-Stokes) equations and 2-equation turbulence model equations was modified to enable numerical simulation of various supersonic flows. For this, various boundary conditions have been implemented to the code. Bleed boundary condition was incorporated into the code for calculating wall mean flow quantities. Furthermore, the boundary conditions for the turbulence quantities along rough surfaces as well as porous walls were applied to the code. The code was verified and validated by comparing the computational results against the experimental data for the supersonic flows over bleed region on a flat plate. Using the newly modified code, numerical simulations were performed and compared with other computational results as well as the experimental data for the supersonic flows over an oblique shock with a bleed region.

  • PDF

Unsteady Aerodynamic Characteristics depending on Reduced Frequency for a Pitching NACA0012 Airfoil at Rec=2.3×104

  • Kim, Dong-Ha;Chang, Jo-Won;Sohn, Myong Hwan
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권1호
    • /
    • pp.8-16
    • /
    • 2017
  • Most of small air vehicles with moving wing fly at low Reynolds number condition and the reduced frequency of the moving wing ranges from 0.0 to 1.0. The physical phenomena over the wing dramatically vary with the reduced frequency. This study examines experimentally the effect of the reduced frequency at low Reynolds number. The NACA0012 airfoil performs sinusoidal pitching motion with respect to the quarter chord with the four reduced frequencies of 0.1, 0.2, 0.4 and 0.76 at the Reynolds number $2.3{\times}10^4$. Smoke-wire flow visualization, unsteady surface pressure measurement, and unsteady force calculation are conducted. At the reduced frequency of 0.1 and 0.2, various boundary layer events such as reverse flow, discrete vortices, separation and reattachment change the amplitude and the rotation direction of the unsteady force hysteresis. However, the boundary layer events abruptly disappear at the reduced frequency of 0.4 and 0.76. Especially at the reduced frequency of 0.76, the local variation of the unsteady force with respect to the angle of attack completely vanishes. These results lead us to the conclusion that the unsteady aerodynamic characteristics of the reduced frequency of 0.2 and 0.4 are clearly distinguishable and the unsteady aerodynamic characteristics below the reduced frequency of 0.2 are governed by the boundary layer events.

주기적인 경계조건을 사용하는 수치모사에서 계산영역 크기의 영향 (Effect of Domain Size on Flow Characteristics in Simulating Periodic Obstacle Flow)

  • 최춘범;장용준;김진호;한석윤;양경수
    • 대한기계학회논문집B
    • /
    • 제33권5호
    • /
    • pp.349-357
    • /
    • 2009
  • Effect of computational domain size in simulating of periodic obstacle flow has been investigated for the flow past tube banks. Reynolds number, defined by freestream velocity ($U_{\infty}$) and cylinder diameter (d), was fixed as 200, and center-to-center distance (P) as 1.5d. In-line square array and staggered square array were considered. Drag coefficient, lift coefficient and Strouhal number were calculated depending on domain size. Circular cylinders were implemented on a Cartesian grid system by using an immersed boundary method. Boundary condition is periodic in both streamwise and lateral directions. Previous studies in literature often use a square domain with a side length of P, which contains only one cylinder. However, this study reveals that the domain size is improper. Especially, RMS values of flow-induced forces are most sensitive to the domain size.

피스톤 링의 유체 윤활 해석 (Hydrodynamic Analysis of Piston Rings)

  • 김재현;최상민;김경웅
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1998년도 제27회 춘계학술대회
    • /
    • pp.167-172
    • /
    • 1998
  • An algorithm of Thermal-elastohydrodynamic lubrication analysis for the piston ring is developed. This algorithm contains cavitation boundary condition so it automatically satisfies conservation of mass. 1-D Reynolds equation and 2-D energy equation are solved simultaneously by using Gauss-Jordan method and Newton-Raphson method. Minimum film thickness and friction force are calculated for 1 cycle. There is little difference between the results caculated by isothermal rigid and EHL analysis in entire cycle. In the results of THL, shear heating effect and temperature boundary condition affect the minimum film thickness and friction force prediction. The minimum film thickness and the friction force calculated by THL are lower than those caculated using isothermal assumption.

  • PDF

증기압을 고려한 플레인 저널 베어링의 동특성 변화 (Variation of the dynamic coefficients of the plain journal bearing considering vapor pressure)

  • 서준호;박재홍;임윤철
    • 정보저장시스템학회논문집
    • /
    • 제8권1호
    • /
    • pp.27-32
    • /
    • 2012
  • Fluid dynamic bearings have several advantages that low noise, high rotational stability and low friction. So, early 2000s, the HDD spindle motors have been replaced ball bearings to fluid dynamic bearing. Most of studies apply inner boundary condition that is inside of bearing pressure larger than atmosphere pressure. Therefore, they used Half-Sommerfeld or Reynolds Boundary condition. This paper investigates the dynamic coefficients of the plain journal considered vapor pressure. As a result, it shows that the vapor pressure effect cannot ignore.

외란을 받는 축-베어링 시스템의 동적 거동에 대한 연구 (A Study on Dynamic Behavior of a Rotor-Bearing System Under External Disturbances)

  • 노병후;김경웅
    • Tribology and Lubricants
    • /
    • 제18권1호
    • /
    • pp.9-15
    • /
    • 2002
  • The nonlinear vibration characteristics of hydrodynamic journal bearings with a circumferential groove we analyzed numerically when the external sinusoidal disturbances are given to the rotor-bearing system continuously. Furthermore, a cavitation algorithm, implementing the Jakobsson-Floberg-Olsson boundary condition, is adopted to predict cavitation regions in a fluid film more accurately than the conventional analysis. which uses the Reynolds boundary condition. It is found that the difference between linear and nonlinear analysis is much more remarkable as the amplitude of external disturbance increases, and it depends upon the excitation frequency of the external disturbance. It is also shown that the cavity region in the fluid film increases as the amplitude or excitation frequency of the external disturbance increases. The whirling center of the steady state orbit moves closer to the bearing center as the amplitude or excitation frequency of the external disturbance increases.