• Title/Summary/Keyword: Reynolds 전단응력

Search Result 72, Processing Time 0.027 seconds

A Study on Pressure Distribution, Wall Shear Stress and Friction Factor of Developing Turbulent Pulsating Flows in a Square Duct(Ⅰ), -Experimental Analysis- (정4각단면덕트의 입구영역에서 난류맥동유동의 압력분포, 전단응력분포와 관마찰계수에 관한 연구(Ⅰ), - 실험해석-)

  • Park, Gil-Mun;Cho, Byeong-Gi;Koh, Yeong-Ha;Bong, Tae-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.5
    • /
    • pp.58-67
    • /
    • 1996
  • In the present study, the pressure distribution, wall shear stress distribution and friction factor of developing turbulent pulsating flows are investigated theoretically and experimentally in the entrance region of a square duct. The pressure distribution for turbulent pulsating flows are in good agreement with the theoretical values. The time-averaged pressure gradients of the turbulent pulsating flows show the same tendency as those of turbulent steady flows as the time-averged Reynolds number $(Re_{ta})$ increase. Mean shear stresses in the turbulent pulsating flow increase more in the inlet flow region than in the fully developed flow region and approach to almost constant value in the fully developed flow region. In the turbulent pulsating flow, the friction factor of the quasi-steady state flow $({\lambda}_{q, tu})$ follow friction factor's law in turbulent steady flow. The entrance length of the turbulent pulsating flow is not influenced by the time-averaged Reynolds number $(Re_{ta})$ and it is about 40 times as large as the hydraulic diameter.

  • PDF

Experimental Investigation on the Flow in Concentric Annuli with Both Rough Walls (내·외벽에 거칠기가 있는 이중동심관 유동에 대한 실험적 연구)

  • Ahn, S.W.;Jung, Y.B.;Kim, K.C.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.1
    • /
    • pp.81-88
    • /
    • 1995
  • Fully developed turbulent flow through three concentric annuli with both the rough inner and outer walls was experimentally investigated for a Reynolds number range Re=15,000-85,000. Measurements were made of the pressure drop, the positions of zero shear stress and maximum velocity, and the velocity distributions in annuli of radius ratios, ${\alpha}=0.26$, 0.4 and 0.56, respectively. The experimental results showed that the positions of zero shear streess and maximum velocity were only weakly dependent on the Reynolds number. It was also found that the position of zero shear stress was not coincident with that of maximum velocity. Furthmore, the former was influenced more sensitively than the latter on the square-ribbed roughness along the axial direction.

  • PDF

The Near Field Structure of Initially Asymmetic Jets (비대칭분류의 노즐출구영역에서의 난류유동장 해석)

  • Kim, K.H.;Shin, J.K.;Lee, H.Y.
    • Journal of ILASS-Korea
    • /
    • v.4 no.4
    • /
    • pp.38-45
    • /
    • 1999
  • The near field structure of round turbulent jets with initially asymmetric velocity distribution is investigated experimentally. Experiments were carried out using a constant temperature hot-wire anemometry system to measure streamwise velocity in the jets. The measurements were undertaken across the jet at various streamwise stations in a range starting from the jet exit plane and up to a downstream location of twelve diameters. The experimental results include the distribution of mean and instantaneous velocities, vorticity field, turbulence intensity, and the Reynolds shear stress. The asymmetry of the jet exit plane was obtained by using circular cross-section pipes with a bend at the upstream of the exit. Three pipes were used for this study: A straight pipe, 90 and 160 degree-bended pipes. Therefore, at the upstream of the pipe exit, the secondary flow through the bend and the mean streamwise velocity distribution could be controlled by changing the curvature of pipes.

  • PDF

Effects of interfacial shear stress on laminar-wavy film flow (층류-파동 액막 유동에 대한 계면 전단응력의 영향)

  • Kim, Byeong-Ju;Jeong, Eun-Su;Kim, Jeong-Heon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.7
    • /
    • pp.992-1000
    • /
    • 1998
  • In the present study the behavior of laminar-wavy film flowing down a vertical plate was studied analytically. The effects of film Reynolds number and interfacial shear stress on the mean film thickness, wave amplitude, wave length, and wave celerity were analysed. The anayltical results on the periodic-wave falling film showed good agreements with experimental data for Re < 100. As the film Reynolds number increased, mean film thickness, wave amplitude, and wave celerity increased, but wave length decreased. Depending on the direction of interfacial shear stress, the shape of wavy interface was disturbed significantly, especially for the intermediate-wave. As the interfacial shear stress increased, for the periodic-wave film, wave amplitude and wave celerity increased, but mean film thickness and wave length decreased.

A Study on Hemolysis Characteristics of Intra-Cardiac Axial Flow Blood Pump (심장내 이식형 축류 혈액펌프 용혈특성에 관한 연구)

  • 김동욱
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.353-362
    • /
    • 2000
  • Minimization of hemolysis is one of the key factors for successful axial flow blood pumps. It is, however, difficult to estimate the hemolytic performance of axial flow blood pumps without experiments. Instead, the Computational Fluid Dynamics(CFD) analysis enables the prediction of hemolysis. Three-dimensional fluid dynamics of axial flow pumps with different impellers were analyzed using the CFD software, FLOTRAN. The turbulence model k-$\varepsilon$ was used. The changes in turbulent kinetic energy applied to each particle (red blood cell) flowing through the pumps were computed and displayed by the particle trace method (particle spacing of 10 msec). Also, the Reynolds shear stress was calculated from the turbulent kinetic energy. The shear stress was higher behind the impellers than elsewhere. The CFD analysis could predict in vitro results of hemolysis and also the areas where hemolysis occurred. The CFD analysis was found to be a useful tool for designing less hemolytic rotary blood pumps.

  • PDF

Redeveloping Turbelent Boundary Layer after Separation-Reattachment(II) -A Consideration on Turbulence Models- (박리-재부착 이후의 재발달 난류경계층 II -난류 모델들에 관한 고찰-)

  • 백세진;유정열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.999-1011
    • /
    • 1989
  • A consideration on the trubulence models for describing the redeveloping turbulent boundary layer beyond separation-reattachment in the flow over a backward-facing step is given through experimental and numerical studies. By considering the blance among the measured values of respective terms in the transport equations for the turbulent kinetic energy and the turbulent shear stress, the recovering process of the redeveloping boundary layer from non-equilibrium to equilibrium has been investigated, which takes place slowly over a substantial distance in the downstream direction. In the numerical study, the standard K-.epsilon. model and the Reynolds stress model have been applied to two kinds of flow regions, one for the entire downstream region after the backward-facing step and another for the downstream region after reattachment. Then the results are compared to a meaningful extent, with the experimental values of the turbulent kinetic energy k, the turbulent energy production term P, the dissipation term K-.epsilon. model, a necessity for a new modelling has been brought forward, which can be also applied to the case of the nonequlibrium turbulent flow.

A Study on the Shear Stress Distribution of the Steady and Physiological Blood Flows (정상 및 박동성 혈류의 전단응력분포에 관한 연구)

  • Suh, S.H.;Yoo, S.S.;Roh, H.W.;Shim, J.W.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.05
    • /
    • pp.113-116
    • /
    • 1995
  • Steady and physiological flows of a Newtonian fluid and blood in the bifurcated arterial vessel are numerically simulated. Distributions of velocity, pressure and wall shear stress in the bifurcated arterial vessel are calculated to investigate the differences between steady and physiological flows. For the given Reynolds number physiological flow characteristics of a Newtonian fluid and blood in the bifurcated arterial vessel are quite different from those of steady flows. No flow separation or flow reversal in the bifurcated region in the downstream after stenosis appears during the acceleration phase. Also, no recirculation region is seen for steady flows. However, during the deceleration phase the flow began to exhibit flow reversal, which is eventually extended to the entire wall region.

  • PDF

A RANS modeling of backward-facing step turbulent flow in an open channel (개수로에서의 후향단차 난류 흐름 RANS 수치모의)

  • Kim, Byungjoo;Paik, Joongcheol
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.2
    • /
    • pp.147-157
    • /
    • 2022
  • The backward-facing step (BFS) is a benchmark geometry for analyzing flow separation occurred at the edge and resulting development of shear layer and recirculation zone that are occupied by turbulent flow. It is important to accurately reproduce and analyze the mean flow and turbulence statistics of such flows to design physically stable and performance assurance structure. We carried out 3D RANS computations with widely used, two representative turbulence models, k-ω SST and RNG k-ε, to reproduce BFS flow at the Reynolds number of 23,000 and the Froude number of 0.22. The performance of RANS computations is evaluated by comparing numerical results with an experimental measurement. Both RANS computations with two turbulence models appear to reasonably well reproduce mean flow in the shear layer and recirculation zone, while RNG k-ε computation results in about 5% larger velocity between the outer edge of boundary layer and the free surface above the recirculation zone than k-ω SST computation and experiment. Both turbulence models underestimate the shear stress distribution experimentally observed just downstream of the sharp edge of BFS, while shear stresses computed in the boundary layer downstream of reattachment point are agree reasonably well with experimental measurement. RNG k-ε modeling reproduces better shear stress distribution along the bottom boundary layer, but overestimates shear shear stress in the approaching boundary layer and above the bottom boundary layer downstream of the BFS.

Experimental Study for the Mixing Effect of the Driven Bar on Rotating Flow in a Closed Cylinder (원통내 회전유동에서 회전봉의 형상이 혼합효과에 미치는 영향에 관한 실험적 연구)

  • Kim, Yu-Gon;Kim, Dong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.2
    • /
    • pp.156-163
    • /
    • 2001
  • The experiment is conducted on the rapidly rotating incompressible flow within a confined cylinder using LDV(Laser Doppler Velocimetry). The configurations of interest are the flows between a rotating upper disk with a bar and a stationary lower disk enclosed within a cylinder. The flow is considered to be an axisymmetric undisturbed basic flow. The results show that the flow is strongly dependent on the radius and the shape of bar but is negligibly affected by the Reynolds number in turbulent flow. It is observed that in the lid-driven case the main forms near the wall as the Reynolds number increases. The thin bar causes the second axial flow due to the suction effect and the thick bar causes the main flow to be pulled toward the surface of the bar. The step bar shows the dual effect of the two. 1:2 tilt bar shows that the main flow distributes wider than the other cases in which interference occurs due step bar.

Investigation of the Three-dimensional Turbulent Flow Fields in Cone Type Gas Burner for Furnace - On the Turbulent Characteristics - (난방기용 콘형 가스버너에서 3차원 난류 유동장 고찰 - 난류특성치에 대하여 -)

  • Kim, J.K.;Jeong, K.J.;Kim, S.W.;Kim, I.K.
    • Journal of Power System Engineering
    • /
    • v.5 no.1
    • /
    • pp.21-26
    • /
    • 2001
  • This paper represents the turbulent intensity, the turbulent kinetic energy and Reynolds shear stress in the X-Y plane of cone type swirl gas burner measured by using X-probe from the hot-wire anemometer system. The experiment is carried out at flowrate 350 and $450{\ell}/min$ respectively in the test section of subsonic wind tunnel. The turbulent intensity and the turbulent kinetic energy show that the maximum value is formed in the narrow slits distributed radially on the edge of a cone type swirl burner, hence, the combustion reaction is anticipated to occur actively near this region. And the turbulent intensities ${\upsilon}\;and\;{\omega}$ are disappeared faster than the turbulent intensity u due to the inclined flow velocity ejecting from the swirl vanes of a cone type baffle plate of burner. Moreover, the Reynolds shear stress $u{\upsilon}$ is distributed about three times as large as the Reynolds shear stress $u{\omega}$ in the outer region of the cone type gas burner.

  • PDF