• Title/Summary/Keyword: Revised Universal Soil Loss Equation (RUSLE)model

Search Result 20, Processing Time 0.018 seconds

Estimation of Soil Loss by Land Use in the Geum River Basin using RUSLE Model (RUSLE 모델을 이용한 금강 유역의 토지 이용별 토사유출량 추정)

  • Park, Jisang;Kim, Geonha
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.619-625
    • /
    • 2006
  • Amount of soil loss is important information for the proper water quality management, In this research, annual average soil loss of the Geum River basin was estimated using RUSLE (Revised Universal Soil Loss Equation) and GIS (Geographic Information System). Input data were manipulated using ArcGIS ver. 8.3. From crop field which constitute 8.2% of the Geum River Basin, annual average soil loss was estimated as 53.6 ton/ha/year. From the rice paddy field which constitutes 20% of the Geum River Basin, soil loss was estimated as 33.5 ton/ha/year, In comparison, forestry area which constitutes 61.8% of the basin discharged 2.8 ton/ha/year, It could be known from this research that appropriate measures should be implemented to prevent excessive soil loss from the agricultural areas.

Non-point Source Critical Area Analysis and Embedded RUSLE Model Development for Soil Loss Management in the Congaree River Basin in South Carolina, USA

  • Rhee, Jin-Young;Im, Jung-Ho
    • Spatial Information Research
    • /
    • v.14 no.4 s.39
    • /
    • pp.363-377
    • /
    • 2006
  • Mean annual soil loss was calculated and critical soil erosion areas were identified for the Congaree River Basin in South Carolina, USA using the Revised Universal Soil Loss Equation (RUSLE) model. In the RUSLE model, the mean annual soil loss (A) can be calculated by multiplying rainfall-runoff erosivity (R), soil erodibility (K), slope length and steepness (LS), crop-management (C), and support practice (P) factors. The critical soil erosion areas can be identified as the areas with soil loss amounts (A) greater than the soil loss tolerance (T) factor More than 10% of the total area was identified as a critical soil erosion area. Among seven subwatersheds within the Congaree River Basin, the urban areas of the Congaree Creek and the Gills Creek subwatersheds as well as the agricultural area of the Cedar Creek subwatershed appeared to be exposed to the risk of severe soil loss. As a prototype model for examining future effect of human and/or nature-induced changes on soil erosion, the RUSLE model customized for the area was embedded into ESRI ArcGIS ArcMap 9.0 using Visual Basic for Applications. Using the embedded model, users can modify C, LS, and P-factor values for each subwatershed by changing conditions such as land cover, canopy type, ground cover type, slope, type of agriculture, and agricultural practice types. The result mean annual soil loss and critical soil erosion areas can be compared to the ones with existing conditions and used for further soil loss management for the area.

  • PDF

Integration of GIS-based RUSLE model and SPOT 5 Image to analyze the main source region of soil erosion

  • LEE Geun-Sang;PARK Jin-Hyeog;HWANG Eui-Ho;CHAE Hyo-Sok
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.357-360
    • /
    • 2005
  • Soil loss is widely recognized as a threat to farm livelihoods and ecosystem integrity worldwide. Soil loss prediction models can help address long-range land management planning under natural and agricultural conditions. Even though it is hard to find a model that considers all forms of erosion, some models were developed specifically to aid conservation planners in identifying areas where introducing soil conservation measures will have the most impact on reducing soil loss. Revised Universal Soil Loss Equation (RUSLE) computes the average annual erosion expected on hillslopes by multiplying several factors together: rainfall erosivity (R), soil erodibility (K), slope length and steepness (LS), cover management (C), and support practice (P). The value of these factors is determined from field and laboratory experiments. This study calculated soil erosion using GIS-based RUSLE model in Imha basin and examined soil erosion source area using SPOT 5 high-resolution satellite image and land cover map. As a result of analysis, dry field showed high-density soil erosion area and we could easily investigate source area using satellite image. Also we could examine the suitability of soil erosion area applying field survey method in common areas (dry field & orchard area) that are difficult to confirm soil erosion source area using satellite image.

  • PDF

Potential soil loss evaluation using the RUSLE/RUSLE-runoff models in Wadi Saida watershed (N-W Algeria)

  • Cherif, Kessar;Yahia, Nasrallah;Bilal, Bilssag
    • Advances in environmental research
    • /
    • v.9 no.4
    • /
    • pp.251-273
    • /
    • 2020
  • Soil degradation has become a major worldwide environmental problem, particularly in arid and semi-arid climate zones due to irregular rainfall and the intensity of storms that frequently generate heavy flooding. The main objective of this study is the use of geographic information system and remote sensing techniques to quantify and to map the soil losses in the Wadi Saida watershed (624 ㎢) through the revised universal soil loss equation model and a proposed model based on the surface erosive runoff. The results Analysis revealed that the Wadi Saida watershed showed moderate to moderately high soil loss, between 0 and 1000 t/㎢/year. In the northern part of the basin in the region of Sidi Boubkeur and the mountains of Daia; which are characterized by steep slopes, values can reach up to 3000 t/㎢/year. The two models in comparison showed a good correlation with R = 0.95 and RMSE = 0.43; the use of the erosive surface runoff parameter is effective to estimate the rate of soil loss in the watersheds. The problem of soil erosion requires serious interventions, particularly in basins with disturbances and aggressive climatic parameters. Good agricultural practices and forest preservation areas play an important role in soil conservation.

Assessment of Soil Loss at Military Shooting Range by RUSLE Model: Correlation Between Soil Loss and Migration of Explosive Compounds (RUSLE 모델에 의한 군사격장 피탄지 토양유실량 평가: 토양 유실과 오염 화약물질 이동 상관성)

  • Gong, Hyo-Young;Lee, Kwang-Pyo;Lee, Jong-Yeol;Kim, Bumjoon;Lee, Ahreum;Bae, Bumhan;Kim, Ji-Yeon
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.6
    • /
    • pp.119-128
    • /
    • 2012
  • The applicability and accuracy of Revised Universal Soil Loss Equation (RUSLE) model on the estimation of soil loss at impacted area of shooting range was tested to further the understanding of soil erosion at shooting ranges by using RUSLE. At a shooting range located in northern Kyunggi, the amount of soil loss was estimated by RUSLE model and compared with that estimated by Global Positioning System-Total Station survey. As results, the annual soil loss at a study site (202 m long by 79 m wide) was estimated to be 2,915 ton/ha/year by RUSLE and 3,058 ton/ha/year by GPS-TS survey, respectively. The error between two different estimations was less than 5%, however, information on site conditions should be collected more to adjust model coefficients accurately. At the study shooting range, sediments generated by rainfall was transported from the top to near the bottom of the sloping face through sheet erosion as well as rill erosion, forming a gully along the direction of the storm water flow. Coarser fractions of the sediments were redeposited in the limited area along the channel. Distribution characteristics of explosive compounds in soil before and after summer monsoon rainfall in the study area were compared with the erosion patterns. Soil sampling and analyses results showed that the dispersion of explosive compounds in surface soil was consistent with the characteristics of soil erosion and redeposition pattern of sediment movements after rainfalls.

The Estimation of Soil Loss in the Buffer Zone of Guem River using a Simulation of Future Climate Change (미래기후변화를 반영한 금강 수변 구역에서의 표토 유실량 예측)

  • Lee, Dal-Heui;Chung, Sung-Lae
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.6
    • /
    • pp.30-36
    • /
    • 2014
  • The objective of this study is to estimate soil loss in the buffer zone of Guem river with future climate change simulation. Revised Universal Soil Loss Equation (RUSLE) model was used for the estimation of soil loss at the buffer zone of Guem river. As results of simulations, the area of the maximum soil loss potential was estimated as the Cheongsung-myeon Okchun-gun Chungcheongbuk-do. The soil losses were estimated to be 106.67 and 103.00 ton/ha/yr for the 2020 segi (2015-2025) and 2040 segi (2035-2045) in the Cheongsung-myeon area, respectively. Also, the estimated average values of soil losses in the Cheongsung-myeon with future climate change was 110.78 ton/ha/yr.

The Determination of Resolution for Quantification of Soil Loss in GIS Environment (GIS 기반에서 토양침식의 정량화를 위한 해상도 결정에 관한 연구)

  • 장영률;이근상;조기성
    • Spatial Information Research
    • /
    • v.10 no.2
    • /
    • pp.301-316
    • /
    • 2002
  • Soil Loss by outflow of water or rainfall has caused many environmental problems as declining agricultural productivity, damaging pasture and preventing flow of water. Also, validity pondage of reservoir or dam is decreased by rivers inflow of eroded soil. Revised Universal Soil Loss Equation(RUSLE) is mainly used to presume soil loss amount of basin using GIS. But, because comparison with survey data is difficult, it is no large meaning that estimate calculated soil loss amount as quantitative. This research used unit sediment deposit survey data of Bo-seong basin for quantitative conclusion of soil loss amount that calculate on RUSLE. Through comparison examination with unit sediment yield that calculate on RUSLE and unit sediment deposit survey data, we can estimate resolution far RUSLE Model. As a result, cell size of 150m was estimated by thing which is most suitable.

  • PDF

The Analysis of Optimum Resolution with Different Scale of Soil Map for the Calculation of Soil Loss (토양침식량 산정에서 토양도 축척에 따른 적정 해상도 분석에 관한 연구)

  • Lee, Greun-Sang;Jang, Young-Ryul;Cho, Gi-Sung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.3
    • /
    • pp.1-10
    • /
    • 2003
  • RUSLE(revised universal soil loss equation) has been widely used for estimating soil loss. It is very difficult to validate the model estimation since the calculated soil loss should be compared with the survey data for quantification. The input variables for RUSLE model were estimated to grid cell for raster analysis in Bosung basin. Both reconnaissance(1:250,000) and detailed(1:25,000) soil maps were used to derive the input variables for soil erodibility factor. Soil loss calculated using RUSLE were compared to the unit sediment deposit surveyed by KICT(Korea Institute of Construction Technology, 1992) in Bosung basin for assessment. Unit sediment deposit from the cell size of 120m and 150m were the closest to the survey data in 1:250,000 and 1:25,000 map scale, respectively.

  • PDF

Estimating Soil Loss in Alpine Farmland with RUSLE and SEDD (RUSLE와 SEDD를 이용한 고랭지 경작지로부터의 토양유실 평가)

  • Cho Hong-Lae;Jeoung Jong-Chul
    • Spatial Information Research
    • /
    • v.13 no.1 s.32
    • /
    • pp.79-90
    • /
    • 2005
  • The purpose of this study is to estimate quantitatively soil loss and sediment yield in alpine farmland. For this purpose, Naerinchon watershed in Gangwon province was selected as our study area and total annual soil loss and sediment yield was estimated respectively by the Revised Universal Soil Loss Equation (RUSLE) model and the Sediment Delivery Distributed (SEDD) model. The results of this study clearly show that dry field areas have significant impact on the total soil erosion and sediment yield compared with other land use. Dry field areas represent only $2.6\%$ of the total area of the watershed but soil loss and sediment yield account for $10.9\%$ and $33.12\%$ of the total amount respectively Especially as with alpine farmland, this result is more clearly shown. These areas account for $1.8\%$ of the entire watershed but contribute to $7.7\%$ and $15\%$ of the total soil loss and sediment yield respectively. From the above results, we can know that alpine farmland is important source of soil loss and sediment yield and it is need to prevent and control. soil erosion from alpine filmland urgently.

  • PDF

Utilizing the Revised Universal Soil Loss Equation (RUSLE) Technique Comparative Analysis of Soil Erosion Risk in the Geumhogang Riparian Area (범용토양유실공식(RUSLE) 기법을 활용한 금호강 수변지역의 토양유실위험도 비교 분석)

  • Kim, Jeong-Cheol;Yoon, Jung-Do;Park, Jeong-Soo;Choi, Jong-Yun;Yoon, Jong-Hak
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_1
    • /
    • pp.179-190
    • /
    • 2018
  • The purpose of this study is an analysis of the risk of soil erosion before and after the maintenance of riparian area using the Revised Universal Soil Loss Equation (RUSLE) model based on GIS and digitizing data. To analysis of soil erosion loss in the study area, land cover maps, topographical maps, soil maps, precipitation and other data were used. After digitizing the riparian area of the Geumhogang, the area is divided into administrative district units, respectively. Amount of soil loss was classified into 5 class according to the degree of loss. Totally, 1 and 5 class were decreased, and 2-4 class were increased. Daegu and Yeongcheon decreased the area of 5 class, and Gyeongsan did not have area of 5 class. The reason for this is thought to be the decrease of the 5 class area due to the park construction, expansion of artificial facilities, and reduction of agricultural land. Simplification of riverside for river dredging and park construction has increased the flow rate of the riverside and it is considered that the amount of soil erosion has increased.