• Title/Summary/Keyword: Revetment concrete block

Search Result 6, Processing Time 0.025 seconds

A Fundamental Study on the Load Resistance Characteristics of Revetment Concrete Block with Recycled Concrete Aggregate and GFRP Rebar (순환골재와 GFRP 보강근을 적용한 호안블럭의 하중저항특성에 관한 연구)

  • Kim, Yongjae;Kim, Jongho;Moon, Doyoung
    • Resources Recycling
    • /
    • v.31 no.5
    • /
    • pp.42-51
    • /
    • 2022
  • Aggregate resources in Korea are expected to run out owing to an increase in development demand and construction investment. Recycled concrete aggregates (RCA), extracted from waste concrete, have a lower quality than natural aggregates. However, RCA can produce concrete similar in quality to the normal concrete by aggregate pretreatment, use of admixtures, and quality control. RCA are most suitable for use in precast concrete products such as sidewalk blocks and revetment blocks. Herein, the feasibility of producing revetment blocks using recycled aggregate concrete (RAC), similar in quality to normal concrete, was analyzed. The amount of RCA was varied, and moderate high early strength cement and steam curing were used to produce the concrete test blocks. In the block test, the load resistance characteristics of the blocks were evaluated to determine optimal RAC and glass fiber reinforced polymer (GFRP) rebar compositions. Thus, the variable that reduced the cement content was determined at the same level as that of natural aggregate concrete by the control of steam curing. In the concrete block test, although this depends on the reinforcement ratio, the RAC block exhibited the same or better performance than a normal concrete block. Therefore, the low quality of RCA in RAC is no longer a problem when concrete mixing and curing are controlled and appropriate reinforcement is used.

A Study on the Stability Analysis of Revetment Structure Subjected to the Wave and Soil Pressure (파압과 토압을 받는 호안구조물의 안정해석에 관한 연구)

  • 안종필
    • The Journal of Engineering Geology
    • /
    • v.7 no.1
    • /
    • pp.37-52
    • /
    • 1997
  • This paper discribes the practical application of stability analysis on the revetment structures, and four different sections of revetment structures are considered in this study. As a result of stability analysis, the the section of inclined revetment with T.T.P. block shows the highest safety factor against to the sliding failure of cap concrete block, while the section of inclined revetment with rubble stone shows the highest safety factor against to the straight and circular sliding failure. And the safety factors are increased by increasing of the rigidity of covered materials and by decreasing of the slope angle. For the safety factor of overturnning and bearing capacity, the section of inclined revetment structures shows higher safety factors than the section of vertical structures, and the safety factors are increased by decreasing of the slope angle and by increasing of the bottom width of the structures.

  • PDF

A Study on the Analysis of Reusability of Marine Dredged Fine-grained Soils (해양 준설세립토의 재사용성 분석에 관한 연구)

  • Kim, Chaemin;Mork, Jeongheum;Choi, Yongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.9
    • /
    • pp.5-12
    • /
    • 2015
  • A large amount of dredged soils occur in the marine purification project but dredged fine-grained soils have been abandoned as a waste. The standards as filling materials, banking materials, revetment blocks and concrete blocks were surveyed. Through the geotechnical tests of marine dredged fine-grained soils and the alkali-activation reaction, the usability as banking materials, revetment blocks and concrete blocks were analyzed. Dredged sands could be used as banking materials, and dredged fine-grained soils could be used as filling materials. A mixture of dredged fine-grained soils and dredged sands could be used as banking materials. Materials produced by the alkali-activation reaction could be used as a revetment block and a concrete block.

An Experimental Study on the Properties of Concrete Block for Revetment Using Recycled Fine Aggregates (재생 잔골재를 이용한 호안블럭의 재료특성에 관한 실험적 연구)

  • 이명규;윤건호;김도현;이근호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.221-224
    • /
    • 2001
  • In this paper, the properties of concrete using recycled fine aggregate are anlyzed. Five different contents. 0%, 40%, 60%, 80% and 100% of recycled concrete were used for this study. At curing 280days, compressive strength, dry-shrinkage, static modulus of elasticity and poission's ratio have been tested according to replacement ratio of recycled fine aggregates.

  • PDF

Evaluation of Hydraulic Stability Using Real Scale Experimental on Porous Concrete Revetment Block (다공성콘크리트 호안블록의 실규모 실험을 통한 수리안정성 평가)

  • Kim, Bong-Kyun;Seo, Dae-Seuk;Park, Jun-Seok;Kim, Yun-Yung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.122-130
    • /
    • 2016
  • The past few decades of industrialization enabled human-centered stream developments, which in turn resulted in constructing straight or covered streams, which are used only for sewage disposal purpose. However, these types of streams have become the cause of flood damages such as localized heavy rain. In response, various construction methods have been implemented to prevent stream and embankment damages. However, regulations regarding these measures only lay out minimum standards such as the height of slopes and the minimum angle of inclination. Moreover, examination of tractive force, the most crucial factor in preventing flood damage, is nonexistent. Therefore, this study evaluates various tractive forces by implementing a porous concrete tetrapod at a full scale artificial stream for experiment, controlling the rate of inflow, and measuring the velocity and depth of the stream under different experiment conditions. The test results of the compressive strength, and porosity and density of rock of the porous concrete tetrapod was between 16.6 and 23.2 MPa, and the actual measurement of air void was 10.1%, thus satisfying domestic standard. The result of tractive force experiment showed a limiting tractive force of $47.202N/m^2$, not satisfying the tractive force scope of $67N/m^2$ the stream design working expertise proposes. However, there was neither damage nor loss of blocks and hardpan. Based on previous researches, it can be expected that there will be resistance against a stronger tractive force. Therefore, it is necessary to conduct another experiment on practical limiting tractive force by adjusting some experimental conditions.