• Title/Summary/Keyword: Reverse-reclamation

Search Result 20, Processing Time 0.028 seconds

Fouling and cleaning of reverse osmosis membrane applied to membrane bioreactor effluent treating textile wastewater

  • Srisukphun, Thirdpong;Chiemchaisri, Chart;Chiemchaisri, Wilai;Thanuttamavong, Monthon
    • Environmental Engineering Research
    • /
    • v.21 no.1
    • /
    • pp.45-51
    • /
    • 2016
  • Membrane bioreactor (MBR) and reverse osmosis (RO) membrane system was applied to the treatment and reclamation of textile wastewater in Thailand. An experiment was carried out to determine the fouling behavior and effect of anti-scalant and biocide addition to flux decline and its recovery through chemical cleaning. The RO unit was operated for one month after which the fouled membranes were cleaned by sequential chemical cleaning method. RO flux was found rapidly declined during initial period and only slightly decreased further in long-term operation. The main foulants were organic compounds and thus sequential cleaning using alkaline solution followed by acid solution was found to be the most effective method. The provision of anti-scalant and biocide in feed-water could not prevent deposition of foulant on the membrane surface but helped improving the membrane cleaning efficiencies.

Municipal wastewater reclamation for non-potable use using hollow- fiber membranes

  • Waghmare, Sujata;Masid, Smita;Rao, A. Prakash;Roy, Paramita;Reddy, A.V.R.;Nandy, T.;Rao, N.N.
    • Membrane and Water Treatment
    • /
    • v.1 no.3
    • /
    • pp.207-214
    • /
    • 2010
  • Approximately 80% of water used in urban areas reappears as municipal wastewater (MWW). Reclamation of MWW is an attractive proposition under the present scenario of water stressed cities in India. In this paper, we attempted to reclaim MWW using lab-scale hollow- fiber (HF) membrane modules for possible reuse in non-potable applications. Experiments were conducted to evaluate the efficiency of virgin HF ($M_1$) and modified HF ($M_2$) modules. The $M_2$ module consists of HF modified with a skin layer formed through interfacial polymerization of m-phenylenediamine with trimesoyl chloride (MPD-TMC). The molecular weight cut-off (MWCO) of $M_1$ was 44000 g/mol and that of $M_2$ 10000 -14000 g/mol on the basis of rejection of polyethylene glycol. The combination of $M_1$ and $M_2$ modules was able to reduce concentrations of most of the pollutants in sewage and improved the treated water quality to the acceptable limits for non potable reuse applications. It is found that about 98-99% of the initial flux is recovered by the backwashing process, which was approximately two times in a month when operated continuously.

Fate and Characteristics of Dissolved Organic Matters in a Water Reclamation Facility, Korea (하수처리수 재이용시설의 공정별 용존유기물질 거동 및 특성)

  • Kwon, Eun-Kwang;Lee, Wontae
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.5
    • /
    • pp.355-362
    • /
    • 2021
  • This study investigated the fate of dissolved organic matter (DOM) in a water reclamation facility (WRF) in Korea. The WRF consists of coagulation, sedimentation, microfiltration, and reverse osmosis (RO) components. The production capacity of WRF is 90,000 m3/day. The reclaimed water is reused as industrial water. We also characterized DOM in raw, processed, and finished waters based on analysis of dissolved organic carbon (DOC), ultraviolet absorbance at 254 nm (UVA254), fluorescence excitation emission matrix (FEEM), and DOC fractions via liquid chromatography-organic carbon detection (LC-OCD). Based on the results of DOC, UVA254, and FEEM analyses, neither the coagulation/sedimentation nor the microfiltration at the WRF effectively removed DOM. The RO process removed more than 94% of DOM. The raw water (i.e., secondary treated effluent obtained from a wastewater treatment plant) exhibited tryptophan-like peaks, which are a promising marker of wastewater, in the FEEM analysis. Coagulation and microfiltration failed to eliminate the wastewater marker, whereas RO completely removed it. The raw water also carried high levels (89.4%) of hydrophilic and low-molecular weight substances, which are difficult to remove via coagulation-sedimentation or microfiltration. Humic substance was a major component of the hydrophilic fractions. Based on the LC-OCD analysis, RO effectively removed the humic and polymeric materials from DOM.

Development of Wastewater Reclamation System With Use of Microfilter and Reverse Osmosis (정밀여과와 역삼투를 이용한 방류수 재이용 시스템 개발)

  • 강신경
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05b
    • /
    • pp.119-122
    • /
    • 2004
  • 최근 들어 용수가격 상승과 갈수기 대비 대체용수 확보차원에서 폐수를 처리하여 공업용수를 재이용하는 사례가 증가하고 있다. 국내의 경우 단위 사업장에서 폐수재이용 시설을 설치한 사례는 비교적 많은 편이나, 정상적으로 가동하는 경우는 드문 것으로 조사되고 있다[1]. 이는 초기 시설 투자비를 줄이기 위하여 전처리를 소홀히 한 것이 가장 큰 원인으로 판단된다.(중략)

  • PDF

A Critical Analysis on Korea's Tidelands Policy : From a Sustainable Development Point of View (한국의 갯벌정책에 대한 비판적 소고: 지속가능한 발전의 관점에서)

  • Moon, Seogwoong
    • Environmental and Resource Economics Review
    • /
    • v.16 no.3
    • /
    • pp.575-605
    • /
    • 2007
  • Korea's tidelands policy IS examined and criticized in the paper. Korea's major tidelands in the west coast might disappear within a decade. The anachronistic development IS driven by the political interest group, forming coalition for reclamation and busily fulfilling its own profits under the facade of public good and regional development. But all regions of the world have been gradually scrapping the massive reclamation projects since the 1970's and active movements to reverse the reclamation and restore the nature are on the rise. In 1978, the U.S. Supreme Court decided to suspend the construction of the dam and to protect the snail darter despite that over 100 million dollars had been injected. This court ruling became famous and caused the American public to change their perception about the environment. In the Netherlands, following a prolonged discussion on pros and cons of reclamation, open type seawall was adopted to strike a balance among the available alternatives. Japan's Ministry of Environment was praised for forming the National Wetland Committee in order to designate 20 new Ramsar sites by 2008, with an objective to reach 33 designated Ramsar sites. Away from the large-scale reclamation projects, Korea has to move towards smaller-scale projects focusing on the knowledege intensive and circular economy society that are more in harmony with the environment.

  • PDF

Physical Geographical Characteristics of Natural Wetlands on the Downstream Reach of Nakdong River (낙동강 하류 연안 자연습지의 자연지리적 특성)

  • Son, Myoung-Won;Jeon, Young-Gweon
    • Journal of the Korean association of regional geographers
    • /
    • v.9 no.1
    • /
    • pp.66-76
    • /
    • 2003
  • Wetland is the ecotone between aquatic ecosystem and land ecosystem, and is much valuable in terms of ecology and economic. The stream wetland among inland fresh wetlands occupies the largest area but has been recognized as only a channel not a habitat. The purposes of this paper are to consider the characteristics of natural wetlands formed in the tributary flowing into the downstream reach of Nakdong River and to find its optimal management policy. Natural wetlands in the middle-size streams (2nd${\sim}$3rd order) are large marshlands, and were formed at the places from the mainstream away, because natural wetlands were formed in the reach of longitudinal profiles during the last glacial and the post-glacial period meet in disharmony. In order to conserve these natural wetlands effectively, we should compile the inventories of wetlands and make precise distribution maps. And we should do 'reverse-reclamation' which means the alteration of some farmlands reclaimed from natural wetland into natural wetland ecosystem, and develop the place or the space for wildlife education and ecotourism.

  • PDF

Carbonate scale reduction in reverse osmosis membrane by CO2 in wastewater reclamation

  • Shahid, Muhammad Kashif;Pyo, Minsu;Choi, Young-Gyun
    • Membrane and Water Treatment
    • /
    • v.8 no.2
    • /
    • pp.125-136
    • /
    • 2017
  • Reverse osmosis technology is being used on large scale for treatment of ground water, brackish water, wastewater and sea water. The most challenging issue in RO process is carbonate scaling which is directly linked with the efficiency and economy. Considering the natural phenomena of carbonate scaling different adaptations have been made to control scaling on the surface of RO membrane including acid dosage and antiscalant addition. As carbonate scaling is directly related with pH level of feed water, present study describes an experimental approach to reduce scaling on RO membrane by lowering the feed water pH by purging $CO_2$. In this comparative study four different conditions including control process (without any scale inhibitor), with dosage of antiscalant, with purging of $CO_2$ and with co addition of antiscalant and $CO_2$ in a feed stream line; it was established that $CO_2$ is a better appliance to reduce carbonate scaling on the membrane surface by reduce pH of feed stream. It was also observed that $CO_2$ and antiscalant mutually function better for scale control.

Reclamation of Waste Lubricating Oil Using Ceramic Composite Membranes (세라믹 복합막을 이용한 폐윤활유 재생)

  • 현상훈;김계태
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.10a
    • /
    • pp.59-59
    • /
    • 1996
  • 막분리에 의한 폐윤활유 재생공정을 개발하기 위한 기초 연구로써 폐윤활유 분리/재생용으로 적합한 복층(multilayer)세라믹 복합막의 제조와 합성막의 폐유 분리 효율등이 연구되었다. 결함이 없고 두께가 균일한 지르코니아 복합막 (기공크기 0.07 $\mu$m 이하)은 압출 성형법으로 제조한 튜브형 $\alpha$-알루미나 담체 (외경 7.8 mm, 두께 0.6 mm, 기공크기 0.7 $\mu$m)내부표면에 역침지 인상법(reverse dip-drawing technique)에 의하여 지르코니아 슬러리를 코팅 한 후 950$\circ$C에서 1시간 열처리하여 제조 되었다. 또한 지르코니아 복합막 위에 니타니아 졸-겔 코팅을 한 후 450$\circ$C에서 2시간 열처리하여 기공크기가 15 nm정도인 3층 복합막을 제조 하였다. SEM, Bubble Point Test, Mercury Porosimeter 그리고 분획 분자량 측정등에 의하여 복합막의 코팅층 두께, 결함유무 및 막의 기공크기등을 분석하였다.

  • PDF

Pilot-Scale Simulation of Desalination Process Using Water Integrated Forward Osmosis System (물통합형 정삼투 시스템을 이용한 파일럿 스케일 담수 공정 모사)

  • Kim, Bongchul;Hong, Seungkwan;Choi, Juneseok
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.4
    • /
    • pp.403-408
    • /
    • 2017
  • In these days, wastewater reclamation and seawater desalination play essential role in addressing the challenge of worldwide water scarcity. Particularly, reverse osmosis (RO) for seawater desalination process is commonly used due to less energy consumption than conventional thermodynamic systems. However, membrane fouling and electrical energy consumption during operation of RO system for seawater desalination haver continued to be a obstruction to its application. In this study, therefore, wastewater secondary effluent is used for osmotic dilution of seawater. Firstly, fouling behaviour of RO by simulating wastewater effluent in osmotic dilution process was measured and we calculated energy consumption of overall desalination process by theoretical equations and commercial program. Our results reveal that RO membrane fouling can be efficiently controlled by pre-treatment systems such as nano filtration (NF) or forward osmosis (FO) process. Especially FO system for osmotic dilution process is a non-pressurized membrane system and, therefore, the operating energy consumption of overall desalination system was the lowest. Moreover, fouling layer on FO membrane is comparatively weak and reversible enough to be disrupted by physical cleaning. Thus, RO system with low salinity feed water through FO process is possible as a less energy consuming desalination system with efficient membrane fouling control.