• 제목/요약/키워드: Reverse transcription

검색결과 1,338건 처리시간 0.028초

연교(連翹)가 만성 비세균성 전립선영 Rat의 염증발현인자 및 세포조직 변화에 미치는 영향 (The Effects of Forsythiae Frucus on Inflammatory Genes and Cyto-pathological Alterations in Chronic Non-Bacterial Prostatitis Rat Model)

  • 이진신;안영민;안세영;두호경;이병철
    • 대한한방내과학회지
    • /
    • 제27권3호
    • /
    • pp.639-652
    • /
    • 2006
  • Objective : The etiology of chronic prostatitis is likely multifactorial, resulting from either a cascade of events after an initiating factor or from a variety of etiologic mechanisms. There is substantiating evidence to support the role of the inflammatory responses in its pathogenesis, and the clinical value in the evaluation of therapeutic efficacy. Forsythiae Frucus has been traditionally used in treatment of inflammatory diseases, including of prostatitis and urinary tract inflammation. In this study, we investigated the effects of Forsythiae Frucus on inflammatory cytokines and cyto-pathological alternation in the rat model of chronic non-bacterial prostatitis induced by castration and $17{\beta}$-estradiol treatment. Methods : Two-month-old rats were treated with $17{\beta}$-estradiol after castration for induction of experimental non-bacterial prostatitis. which is similar to human chronic prostatitis in histopathological profiles. Forsythiae Frucus as an experimental specimen, and testosterone as a positive control, were administered orally. The prostates were evaluated by histopathologlcal parameters including the epithelial score and epithelio-stromal ratio for glandular damage. and the expression of inflammatory cytokine genes including interleukin (IL)-$1{\beta}$, IL-5, IL-12, tumor necrosis factor (TNF)-$\alpha$. eotaxin, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2(cox-2). Results : While prostates of control rats revealed severe acinar gland atrophy and stromal proliferation. the rats treated with Forsythiae Frucus showed a diminished range of tissue damage. Epithelial score was improved in the Forsythiae Frucus group over that of the control (P<0.05). The epithelia-stromal ratio was lower in the Forsythiae Frucus group when compared to that of the control (P<0.05). In the reverse transcription-polymerase chain reaction (RT-PCR) of inflammatory cytosine genes. Forsythiae Frucus inhibited the expression of IL-$1{\beta}$, TNF-$\alpha$, iNOS, cox-2 genes, while it modulated the expression of IL-5, which is an anti-inflammatory cytokine. Conclusions : These findings suggest that Forsythiae Frucus may protect the glandular epithelial cells and also inhibit stromal proliferation in association with the immune modulation including the suppression of inflammatory cytokines and increase of anti-inflammatory cytokines. From theses results. we suggest that Forsythiae Frucus could be a useful remedy agents for treating chronic non-bacterial prostatitis.

  • PDF

Cell Growth of BG-1 Ovarian Cancer Cells was Promoted by 4-Tert-octylphenol and 4-Nonylphenol via Downregulation of TGF-β Receptor 2 and Upregulation of c-myc

  • Park, Min-Ah;Hwang, Kyung-A;Lee, Hye-Rim;Yi, Bo-Rim;Choi, Kyung-Chul
    • Toxicological Research
    • /
    • 제27권4호
    • /
    • pp.253-259
    • /
    • 2011
  • Transforming growth factor ${\beta}$ (TGF-${\beta}$) is involved in cellular processes including growth, differentiation, apoptosis, migration, and homeostasis. Generally, TGF-${\beta}$ is the inhibitor of cell cycle progression and plays a role in enhancing the antagonistic effects of many growth factors. Unlike the antiproliferative effect of TGF-${\beta}$, E2, an endogeneous estrogen, is stimulating cell proliferation in the estrogen-dependent organs, which are mediated via the estrogen receptors, $ER{\alpha}$ and $ER{\beta}$, and may be considered as a critical risk factor in tumorigenesis of hormone-responsive cancers. Previous researches reported the cross-talk between estrogen/$ER{\alpha}$ and TGF-${\beta}$ pathway. Especially, based on the E2-mediated inhibition of TGF-${\beta}$ signaling, we examined the inhibition effect of 4-tert-octylphenol (OP) and 4-nonylphenol (NP), which are well known xenoestrogens in endocrine disrupting chemicals (EDCs), on TGF-${\beta}$ signaling via semi-quantitative reverse-transcription PCR. The treatment of E2, OP, or NP resulted in the downregulation of TGF-${\beta}$ receptor2 (TGF-${\beta}$ R2) in TGF-${\beta}$ signaling pathway. However, the expression level of TGF-${\beta}1$ and TGF-${\beta}$ receptor1 (TGF-${\beta}$ R1) genes was not altered. On the other hand, E2, OP, or NP upregulated the expression of a cell-cycle regulating gene, c-myc, which is a oncogene and a downstream target gene of TGF-${\beta}$ signaling pathway. As a result of downregulation of TGF-${\beta}$ R2 and the upregulation of c-myc, E2, OP, or NP increased cell proliferation of BG-1 ovarian cancer cells. Taken together, these results suggest that E2 and these two EDCs may mediate cancer cell proliferation by inhibiting TGF-${\beta}$ signaling via the downregulation of TGF-${\beta}$ R2 and the upregulation of c-myc oncogene. In addition, it can be inferred that these EDCs have the possibility of tumorigenesis in estrogen-responsive organs by certainly representing estrogenic effect in inhibiting TGF-${\beta}$ signaling.

Alu-Derived Alternative Splicing Events Specific to Macaca Lineages in CTSF Gene

  • Lee, Ja-Rang;Park, Sang-Je;Kim, Young-Hyun;Choe, Se-Hee;Cho, Hyeon-Mu;Lee, Sang-Rae;Kim, Sun-Uk;Kim, Ji-Su;Sim, Bo-Woong;Song, Bong-Seok;Jeong, Kang-Jin;Lee, Youngjeon;Jin, Yeung Bae;Kang, Philyong;Huh, Jae-Won;Chan, Kyu-Tae
    • Molecules and Cells
    • /
    • 제40권2호
    • /
    • pp.100-108
    • /
    • 2017
  • Cathepsin F, which is encoded by CTSF, is a cysteine proteinase ubiquitously expressed in several tissues. In a previous study, novel transcripts of the CTSF gene were identified in the crab-eating monkey deriving from the integration of an Alu element-AluYRa1. The occurrence of AluYRa1-derived alternative transcripts and the mechanism of exonization events in the CTSF gene of human, rhesus monkey, and crabeating monkey were investigated using PCR and reverse transcription PCR on the genomic DNA and cDNA isolated from several tissues. Results demonstrated that AluYRa1 was only integrated into the genome of Macaca species and this lineage-specific integration led to exonization events by producing a conserved 3' splice site. Six transcript variants (V1-V6) were generated by alternative splicing (AS) events, including intron retention and alternative 5' splice sites in the 5' and 3' flanking regions of CTSF_AluYRa1. Among them, V3-V5 transcripts were ubiquitously expressed in all tissues of rhesus monkey and crab-eating monkey, whereas AluYRa1-exonized V1 was dominantly expressed in the testis of the crab-eating monkey, and V2 was only expressed in the testis of the two monkeys. These five transcript variants also had different amino acid sequences in the C-terminal region of CTSF, as compared to reference sequences. Thus, species-specific Alu-derived exonization by lineage-specific integration of Alu elements and AS events seems to have played an important role during primate evolution by producing transcript variants and gene diversification.

Effects of Korean Red Ginseng extract on tissue plasminogen activator and plasminogen activator inhibitor-1 expression in cultured rat primary astrocytes

  • Ko, Hyun Myung;Joo, So Hyun;Kim, Pitna;Park, Jin Hee;Kim, Hee Jin;Bahn, Geon Ho;Kim, Hahn Young;Lee, Jongmin;Han, Seol-Heui;Shin, Chan Young;Park, Seung Hwa
    • Journal of Ginseng Research
    • /
    • 제37권4호
    • /
    • pp.401-412
    • /
    • 2013
  • Korean Red Ginseng (KRG) is an oriental herbal preparation obtained from Panax ginseng Meyer (Araliaceae). To expand our understanding of the action of KRG on central nervous system (CNS) function, we examined the effects of KRG on tissue plasminogen activator (tPA)/plasminogen activator inhibitor-1 (PAI-1) expression in rat primary astrocytes. KRG extract was treated in cultured rat primary astrocytes and neuron in a concentration range of 0.1 to 1.0 mg/mL and the expression of functional tPA/PAI-1 was examined by casein zymography, Western blot and reverse transcription-polymerase chain reaction. KRG extracts increased PAI-1 expression in rat primary astrocytes in a concentration dependent manner (0.1 to 1.0 mg/mL) without affecting the expression of tPA itself. Treatment of 1.0 mg/mL KRG increased PAI-1 protein expression in rat primary astrocytes to $319.3{\pm}65.9%$ as compared with control. The increased PAI-1 expression mediated the overall decrease in tPA activity in rat primary astrocytes. Due to the lack of PAI-1 expression in neuron, KRG did not affect tPA activity in neuron. KRG treatment induced a concentration dependent activation of PI3K, p38, ERK1/2, and JNK in rat primary astrocytes and treatment of PI3K or MAPK inhibitors such as LY294002, U0126, SB203580, and SP600125 (10 ${\mu}M$ each), significantly inhibited 1.0 mg/mL KRG-induced expression of PAI-1 and down-regulation of tPA activity in rat primary astrocytes. Furthermore, compound K but not other ginsenosides such as Rb1 and Rg1 induced PAI-1 expression. KRG-induced up-regulation of PAI-1 in astrocytes may play important role in the regulation of overall tPA activity in brain, which might underlie some of the beneficial effects of KRG on CNS such as neuroprotection in ischemia and brain damaging condition as well as prevention or recovery from addiction.

Novel reassortant 2.3.4.4B H5N6 highly pathogenic avian influenza viruses circulating among wild, domestic birds in Xinjiang, Northwest China

  • Zhang, Qian;Mei, Xindi;Zhang, Cheng;Li, Juan;Chang, Nana;Aji, Dilihuma;Shi, Weifeng;Bi, Yuhai;Ma, Zhenghai
    • Journal of Veterinary Science
    • /
    • 제22권4호
    • /
    • pp.43.1-43.10
    • /
    • 2021
  • Background: The H5 avian influenza viruses (AIVs) of clade 2.3.4.4 circulate in wild and domestic birds worldwide. In 2017, nine strains of H5N6 AIVs were isolated from aquatic poultry in Xinjiang, Northwest China. Objectives: This study aimed to analyze the origin, reassortment, and mutations of the AIV isolates. Methods: AIVs were isolated from oropharyngeal and cloacal swabs of poultry. Identification was accomplished by inoculating isolates into embryonated chicken eggs and performing hemagglutination tests and reverse transcription polymerase chain reaction (RT-PCR). The viral genomes were amplified with RT-PCR and then sequenced. The sequence alignment, phylogenetic, and molecular characteristic analyses were performed by using bioinformatic software. Results: Nine isolates originated from the same ancestor. The viral HA gene belonged to clade 2.3.4.4B, while the NA gene had a close phylogenetic relationship with the 2.3.4.4C H5N6 highly pathogenic avian influenza viruses (HPAIVs) isolated from shoveler ducks in Ningxia in 2015. The NP gene was grouped into an independent subcluster within the 2.3.4.4B H5N8 AIVs, and the remaining six genes all had close phylogenetic relationships with the 2.3.4.4B H5N8 HPAIVs isolated from the wild birds in China, Egypt, Uganda, Cameroon, and India in 2016-2017, Multiple basic amino acid residues associated with HPAIVs were located adjacent to the cleavage site of the HA protein. The nine isolates comprised reassortant 2.3.4.4B HPAIVs originating from 2.3.4.4B H5N8 and 2.3.4.4C H5N6 viruses in wild birds. Conclusions: These results suggest that the Northern Tianshan Mountain wetlands in Xinjiang may have a key role in AIVs disseminating from Central China to the Eurasian continent and East African.

Development of a multiplex qRT-PCR assay for detection of African swine fever virus, classical swine fever virus and porcine reproductive and respiratory syndrome virus

  • Chen, Yating;Shi, Kaichuang;Liu, Huixin;Yin, Yanwen;Zhao, Jing;Long, Feng;Lu, Wenjun;Si, Hongbin
    • Journal of Veterinary Science
    • /
    • 제22권6호
    • /
    • pp.87.1-87.12
    • /
    • 2021
  • Background: African swine fever virus (ASFV), classical swine fever virus (CSFV), and porcine reproductive and respiratory syndrome virus (PRRSV) are still prevalent in many regions of China. Co-infections make it difficult to distinguish their clinical symptoms and pathological changes. Therefore, a rapid and specific method is needed for the differential detection of these pathogens. Objectives: The aim of this study was to develop a multiplex real-time quantitative reverse transcription polymerase chain reaction (multiplex qRT-PCR) for the simultaneous differential detection of ASFV, CSFV, and PRRSV. Methods: Three pairs of primers and TaqMan probes targeting the ASFV p72 gene, CSFV 5' untranslated region, and PRRSV ORF7 gene were designed. After optimizing the reaction conditions, including the annealing temperature, primer concentration, and probe concentration, multiplex qRT-PCR for simultaneous and differential detection of ASFV, CSFV, and PRRSV was developed. Subsequently, 1,143 clinical samples were detected to verify the practicality of the assay. Results: The multiplex qRT-PCR assay could specifically and simultaneously detect the ASFV, CSFV, and PRRSV with a detection limit of 1.78 × 100 copies for the ASFV, CSFV, and PRRSV, but could not amplify the other major porcine viruses, such as pseudorabies virus, porcine circovirus type 1 (PCV1), PCV2, PCV3, foot-and-mouth disease virus, porcine parvovirus, atypical porcine pestivirus, and Senecavirus A. The assay had good repeatability with coefficients of variation of intra- and inter-assay of less than 1.2%. Finally, the assay was used to detect 1,143 clinical samples to evaluate its practicality in the field. The positive rates of ASFV, CSFV, and PRRSV were 25.63%, 9.36%, and 17.50%, respectively. The co-infection rates of ASFV+CSFV, ASFV+PRRSV, CSFV+PRRSV, and ASFV+CSFV+PRRSV were 2.45%, 2.36%, 1.57%, and 0.17%, respectively. Conclusions: The multiplex qRT-PCR developed in this study could provide a rapid, sensitive, specific diagnostic tool for the simultaneous and differential detection of ASFV, CSFV, and PRRSV.

보골지 추출물이 파골세포 분화 및 골흡수 관련 유전자 발현에 미치는 영향 (Psoraleae Semen Ethanol Extract Inhibits RANKL-Induced Osteoclast Differentiation and Osteoclast Specific Genes Expression)

  • 류광현;김엄지;김민선;김재현;이유진;진대환;손영주;정혁상
    • Korean Journal of Acupuncture
    • /
    • 제38권3호
    • /
    • pp.140-150
    • /
    • 2021
  • Objectives : The increase of osteoclasts could cause osteoporosis and bone-related diseases. Also, the inhibition of osteoclast differentiation is important in treating bone-related diseases. Traditionally, Psoraleae Semen has been used for geriatric diseases, aging and musculoskeletal diseases. The purpose of this study is to investigate the effect of Psoraleae Semen ethanol extract (PS) on osteoclast differentiation and its function. Methods : To confirm the effect of PS on osteoclastogenesis and bone resorption activity, various levels of concentrations of PS (5, 10, 20 and 40 ㎍/ml) were tested on RAW 264.7 cells cultured with RANKL. We measured tartarate-resistant acid phosphatase (TRAP)-positive cells, TRAP activity, pit formation and F-actin ring formation. The expressions of nuclear factor of activated T-cells (NFATc1) and c-Fos were confirmed through western blot and reverse transcription- polymerase chain reaction (RT-PCR). Also, the expression of bone resorption and fusion-related genes in osteoclast was confirmed by RT-PCR. Results : PS decreased the number of TRAP-positive cells and the TRAP activity. In addition, PS significantly inhibited the formation of pit and F-actin ring. Furthermore, PS decreased the expression of osteoclast related genes. Conclusions : PS inhibits osteoclast differentiation and bone resorption ability through inhibition of the expression of osteoclast-related genes. This indicates that PS may be a potential therapeutic agent to osteoporosis by suppressing osteoclastogenesis.

꽃송이버섯 열수추출물이 HaCaT의 세포 연접 관련 유전자의 발현에 대한 영향 (Effect of a Hot Water Extract of Sparasis Crispa on the Expression of Tight Junction-Associated Genes in HaCaT Cells)

  • 한효상
    • 대한통합의학회지
    • /
    • 제9권2호
    • /
    • pp.83-92
    • /
    • 2021
  • Purpose : Keratinocytes are the main cellular components involved in wound healing during re-epithelization and inflammation. Dysfunction of tight junction (TJ) adhesions is a major feature in the pathogenesis of various diseases. The purpose of this study was to identify the various effects of a Sparassis crispa water extract (SC) on HaCaT cells and to investigate whether these effects might be applicable to human skin. Methods : We investigated the effectiveness of SC on cell HaCaT viability using MTS. The antioxidant effect of SC was analyzed by comparing the effectiveness of ABTS to that of the well-known antioxidant resveratrol. Reverse-transcription quantitative polymerase chain reaction (qRT-PCR) is the most widely applied method Quantitative RT-PCR analysis has shown that SC in HaCaT cells affects mRNA expression of tight-junction genes associated with skin moisturization. In addition, Wound healing is one of the most complex processes in the human body. It involves the spatial and temporal synchronization of a variety of cell types with distinct roles in the phases of hemostasis, inflammation, growth, re-epithelialization, and remodeling. wound healing analysis demonstrated altered cell migration in SC-treated HaCaT cells. Results : MTS analysis in HaCaT cells was found to be more cytotoxic in SC at a concentration of 0.5 mg/㎖. Compared to 100 µM resveratrol, 4 mg/㎖ SC exhibited similar or superior antioxidant effects. SC treatment in HaCaT cells reduced levels of claudin 1, claudin 3, claudin 4, claudin 6, claudin 7, claudin 8, ZO-1, ZO-2, JAM-A, occludin, and Tricellulin mRNA expression by about 1.13 times. Wound healing analysis demonstrated altered cell migration in SC-treated HaCaT cells and HaCaT cell migration was also reduced to 73.2 % by SC treatment. Conclusion : SC, which acts as an antioxidant, reduces oxidative stress and prevents aging of the skin. Further research is needed to address the effects of SC on human skin given the observed alteration of mRNA expression of tight-junction genes and the decreased the cell migration of HaCaT cells.

Identification and Validation of Circulating MicroRNA Signatures for Breast Cancer Early Detection Based on Large Scale Tissue-Derived Data

  • Yu, Xiaokang;Liang, Jinsheng;Xu, Jiarui;Li, Xingsong;Xing, Shan;Li, Huilan;Liu, Wanli;Liu, Dongdong;Xu, Jianhua;Huang, Lizhen;Du, Hongli
    • Journal of Breast Cancer
    • /
    • 제21권4호
    • /
    • pp.363-370
    • /
    • 2018
  • Purpose: Breast cancer is the most commonly occurring cancer among women worldwide, and therefore, improved approaches for its early detection are urgently needed. As microRNAs (miRNAs) are increasingly recognized as critical regulators in tumorigenesis and possess excellent stability in plasma, this study focused on using miRNAs to develop a method for identifying noninvasive biomarkers. Methods: To discover critical candidates, differential expression analysis was performed on tissue-originated miRNA profiles of 409 early breast cancer patients and 87 healthy controls from The Cancer Genome Atlas database. We selected candidates from the differentially expressed miRNAs and then evaluated every possible molecular signature formed by the candidates. The best signature was validated in independent serum samples from 113 early breast cancer patients and 47 healthy controls using reverse transcription quantitative real-time polymerase chain reaction. Results: The miRNA candidates in our method were revealed to be associated with breast cancer according to previous studies and showed potential as useful biomarkers. When validated in independent serum samples, the area under curve of the final miRNA signature (miR-21-3p, miR-21-5p, and miR-99a-5p) was 0.895. Diagnostic sensitivity and specificity were 97.9% and 73.5%, respectively. Conclusion: The present study established a novel and effective method to identify biomarkers for early breast cancer. And the method, is also suitable for other cancer types. Furthermore, a combination of three miRNAs was identified as a prospective biomarker for breast cancer early detection.

Protective effects of Korean Red Ginseng against sub-acute immobilization stress-induced testicular damage in experimental rats

  • Lee, Sang-Ho;Choi, Kyung-Hwa;Cha, Kyu-Min;Hwang, Seock-Yeon;Park, Un-Kyu;Jeong, Min-Sik;Hong, Jae-Yup;Han, Chang-Kyun;In, Gyo;Kopalli, Spandana Rajendra;Kim, Si-Kwan
    • Journal of Ginseng Research
    • /
    • 제43권1호
    • /
    • pp.125-134
    • /
    • 2019
  • Background: Excessive stress causes varied physiological and psychological disorders including male reproductive problems. Here, we attempted to investigate the protective effects of Korean Red Ginseng (Panax ginseng Meyer; KRG) against sub-acute immobilization stress-induced testicular damage in experimental rats. Methods: Male rats (age, 4 wk; weight, 60-70 g) were divided into four groups (n = 8 in each group): normal control group, immobilization control group, immobilization group treated with 100 mg/kg of KRG daily, and immobilization group treated with 200 mg/kg of KRG daily. Normal control and immobilization control groups received vehicle only. KRG (100 mg/kg and 200 mg/kg) was mixed in the standard diet powder and fed daily for 6 mo. Parameters such as organ weight, blood chemistry, sperm kinematic values, and expression levels of testicular-related molecules were measured using commercially available kits, Western blotting, and reverse transcription polymerase chain reaction. Results: Data revealed that KRG restored the altered testis and epididymis weight in immobilization stress-induced rats significantly (p < 0.05). Further, KRG ameliorated the altered blood chemistry and sperm kinematic values when compared with the immobilization control group and attenuated the altered expression levels of spermatogenesis-related proteins (nectin-2, cAMP responsive element binding protein 1, and inhibin-${\alpha}$), sex hormone receptors (androgen receptor, luteinizing hormone receptor, and follicle-stimulating hormone receptor), and antioxidant-related enzymes (glutathione S-transferase m5, peroxiredoxin-4, and glutathione peroxidase 4) significantly in the testes of immobilization stress-induced rats. Conclusion: KRG protected immobilization stress-induced testicular damage and fertility factors in rats, thereby indicating its potential in the treatment of stress-related male sterility.