• 제목/요약/키워드: Reverse redrawing

검색결과 6건 처리시간 0.019초

분리된 원주압 보조 액압유도 역 재드로잉공정에 관한 연구 (Study on the Hydromechanical Reverse Redrawing Pprocess Assisted by Separate Radial Pressure)

  • 김봉종;이동우;양동열;박찬승
    • 대한기계학회논문집A
    • /
    • 제20권12호
    • /
    • pp.3728-3740
    • /
    • 1996
  • High-quality cups of deep drawing ratio of more than four cannot be simply drawn by conventional drawing and redrawing processes. In the present study, after the first deep drawing process, subsequent hydromechanical reverse redrawing with controlled radial pressure is employed. In order to increase the deep drawing ratio up to muchmore than four, the radial pressure should be controlled independently of the chamber pressure and thus an optimum forming condition can be found easily by varying the radial pressure. The process has been subjected to finite element analysis by using the rigid-platic material modeling considering all the frictional conditions induced by the hydrostatic pressure. In order to consider the pressure effect on the sheet, the pressure distributions on the flange part and the side wall part are calculated mumerically from simplified Navier-stokes equation. The comparison of the computation with the experiment has shown that the finite element modeling can be conveniently emplyed for the design of the process with reliability from the viewpoint of formability.

자동차 엔진풀리 성형 공정 설계에 관한 연구 (A Study on the Forming Process Design of Engine Pulleys for Automobiles)

  • 신보성;최두선;송선호;백재현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.630-634
    • /
    • 1997
  • In this paper,we will discuss in the forming process design of the making engine pulleys for automobiles. These pulleys are required to be made by precision deep drawing process because these are to be combined with bearings and engine timing belts. These pulleys are used of cold rolled steel plates starting with the initial blanking size of 115.2mm and the initial thickness of 1.2mm. Our deep drawing process is designed the continuous 5-steps process, that is, 1'st deep drawing, 2'nd reverse redrawing, 3'rd trimming, 4'th drawing-ironing and 5'yh piercing. This process need no in-process annealing.

  • PDF

다단 벽두께 원통 쉘 성형 공정 설계에 관한 연구 (A Study on the Forming Process Design of Cylindrical Multithickness Shell)

  • 신보성;최두선;김동진;김병민;한규택;신영우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.943-948
    • /
    • 1996
  • In this paper. we will discuss in making large size cylindrical shells with multithickness wall sections such as straight, stepped, tapered sides. These shells are constructed of type 6061 O temper aluminum starting with a blanking size of 877 mm plate. Its diameter to length ratio of 1 to 2.78 and a 36.7% wall reduction is achieved by our continuous deep drawing process. This process required no in-process annealing. But after cold working, these shells is performed heat treatment to T6 condition. These shells are used for the making of seamless LPG pressure vessels after the spinning process. This process is composed of deep drawing, reverse redrawing, drawing-ironing and several ironing processes. In the verification of forming process design, we used DEFORM code.

  • PDF

강소성 유한요소법을 이용한 다단계 디프드로잉의 공정개선에 관한 연구 (A Study on the Process Improvements of the Multi-stage Deep Drawing by the Rigid-plastic Finite Element Method)

  • 전병희;민동균;김형종;김낙수
    • 소성∙가공
    • /
    • 제3권4호
    • /
    • pp.440-453
    • /
    • 1994
  • The multi-stage deep-drawing processes including normal-drawing, reverse-drawing, and re-drawing are analyzed by use of the rigid-plastic finite element method. Computational results on the punch/die loads and thickness distributions were compared with the experiments of the current drawing processes. Deep-drawing processes of the redesigned shell to improve the specific strength and stiffness were simulated with the numerical method developed. With varying several process parameters such as blank size, corner radii of tools, and clearances, the simulation results showed the improvements in reducing the forming loads. Also forming defects were found during simulation and appropriate blank size could be verified.

  • PDF

다단계 디프드로잉의 공정해석에 관한 연구 (A Study on the Process Analysis of Multi-Stage Deep Drawing)

  • 심재진;전병희;김낙수
    • 대한기계학회논문집
    • /
    • 제17권12호
    • /
    • pp.2936-2948
    • /
    • 1993
  • Multi-stage deep drawing is an important sheet metal forming process. The deformation mechanisms of sheet metals during forming processes are complicated mainly due to the geometry and the lubrication of tools involved, the formability and the anisotropic behaviour of the material. The multi-stage deep-drawing processes including normal-drawing, reverse-drawing, and re-drawing are analyzed by use of the rigid-plastic finite element method. The anisotropic behaviour represented by r-value can be incorporated into the formulation. Punch/die loads and thickness distributions were obtained as results of simulating axisymmetric deep drawing processes. The computed results showed good agreements with experiments.