• Title/Summary/Keyword: Reverse pharmacology

Search Result 197, Processing Time 0.025 seconds

Effects of Oxygen-Derived Free Radicals on Brain Microsomal $Na^+-K^+-ATPase$ Activity (산소유리라디칼이 뇌조직 미크로좀분획의 $Na^+-K^+-ATPase$ 활성도에 미치는 영향)

  • Oh, Sae-Moon;Son, Young-Sook;Choi, Kil-Soo;Lim, Jung-Kyoo;Chung, Myung-Hee
    • The Korean Journal of Pharmacology
    • /
    • v.18 no.2
    • /
    • pp.1-14
    • /
    • 1982
  • The effects of xanthine-xanthine oxidase reaction on brain microsomal $Na^+-K^+-ATPase$ activity were studied to see possible involvement of oxygen free radicals in pathologic change occurring in ischemic state of CNS accompanied by cerebral vascular occlusion or impact injury. When microsomal fraction was incubated with xanthine ana xanthine oxidase, $Na^+-K^+-ATPase$ activity of the fraction was markedly inactivated (80% inactivation) whereas btssl $Mg^{++}-ATPase$ was much less sensitive (less than 10% inactivation) compared to that of $Na^+-K^+-ATPase$. The inactivation was observed only in the presence of both xanthine and xanthine oxidase, not either of them alone, and the extent of inactivation was dependent on the concentration of xanthine. In an attempt to determine which of the oxygen species was responsible for the inactivation, the ability of various scavengers to overcome the inactivation was tested. Superoxide dismutase, catalase and 1,4-diazabicyclo(2,2,2)octane were shown to reverse the inactivation of the ATPase in dose-dependent manner. In contrast, mannitol as well as other $OH{\cdot}$quenchers were ineffective in limiting oxygen radical-induced inactivation. Thus $O_{\bar{2}}{\cdot},\;H_2O_2$ and $^1O_2$ were implicated to be mediators involved in the inactivation. Since oxygen radicals are suspected as being a cause of the peroxidative damaging process in train ischemia, the ATPase inactivation by oxygen radicals may be a possible contributing factor which gives rise to functional derangement of nerve cells observed in the pathologic process.

  • PDF

Effect of Korean Ginseng on the Expression of Transferrin Receptor in the Liver Cell Membrane of Rat (백서의 간세포막에서 Transferrin Receptor의 발현에 미치는 인삼의 영향)

  • Lim Jong-Ho;Hong Jang-Hee;Hur Gang-Min;Seok Jeong-Ho;Lee Jae-Heun
    • Journal of Ginseng Research
    • /
    • v.23 no.2 s.54
    • /
    • pp.105-114
    • /
    • 1999
  • To investigate the effects of korean ginseng on the expression of transferrin receptor (TfR) in the liver cell membrane, we had carried out the experiments of $[^{3}H]thymidine$ uptake, $^{125}I-transferrin$ binding, and TfR mRNA expression in the liver after partial hepatectomy of normal and 3'-methyl-4-dimethylaminoa-zobenzene (3'-Me-DAB) treated rat with or without treatment of korean gingseng. $[^3H]thymidine$ uptake was not changed in the liver of 3'-Me-DAB or ginseng treated rat compared to that of control rat, but increased in that of partial hepatectomy of normal or 3'-Me-DAB treated rat. And this increased $[^{3}H]thymidine$ uptake was lowered slightly by the treatment of ginseng. Transferrin binding sites in the liver plasma membrane of ginseng treated rat with or without partial hepatectomy were similar, but increased in that of 3'-Me-DAB treated rat with or without partial hepatectomy compared to those of each control rat and these increased binding sites were reduced by ginseng treatment. Transferrin binding affinity (l/kd) was not changed by ginseng treatment, but tended to decrease in the liver of 3'-Me-DAB treated rat or in those after partial hepatectomy of all groups and reverse by ginseng treatment in 3'-Me-DAB treated rat. The expression of TfR mRNA was increased in the liver of 3'-Me-DAB treated rat with partial hepatectomy (peak at 24 hours), but lowered by ginseng treatment in this rat. From these results, it is suggested that korean ginseng has no effect on the increased expression of TfR with decreased affinity in the cell membrane of regenerated liver after partial hepatectomy of rat, but could inhibt that of 3'-Me-DAB treated rat through the regulation of DNA synthesis or TfR mRNA in partial.

  • PDF

Expression of receptors of Vitamin D and cytokines in osteoclasts differentiated by M-CSF and ODF (Macrophage Colony-Stimulating Factor와 Osteoclast Differentiation Factor로 분화 유도된 생쥐 파골세포에서 Vitamin D 및 수종의 싸이토카인 수용체의 발현)

  • Seong, Soo-Mi;Um, Heung-Sik;Ko, Sung-Hee;Woo, Kyung-Mi;Chang, Beom-Seok
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.4
    • /
    • pp.865-873
    • /
    • 2002
  • The primary cause of tooth loss after 30 years of age is periodontal disease. Destruction of alveolar bone by periodontal disease is done by bone resorbing activity of osteoclasts. Understanding differentiation and activation mechanism of osteoclasts is essential for controling periodontal disease. The purpose of this study is to identify the possible effects of Vitamin D and cytokines affecting osteoclasts and its precursor cells. Four to six week-old mice were killed and humerus, radius, tibia and femur were removed aseptically and washed two times with Hank's solution containing penicillin-streptomycin and then soft tissue were removed. Bone marrow cells were collected by 22 gauge needle. Cells were cultured in Hank's solution containing 1 mg/ml type II collagenase, 0.05% trypsin, 41mM EDTA. Supernatant solution was removed 5 times after 15 minutes of digestion with above mentioned enzyme solution, and remained bone particles were maintained in alpha-MEM for 15 minutes and $4^{\circ}C$ temperature. Bone particles were agitated for 1 minute and supernatant solution containing osteoclast precursor cells were filtrated with cell stainer. These separated osteoclast precursor cells were dispensed with 100-mm culture dish by $1{\times}10^7$ cells unit and cultured in ${\alpha}$- MEM containing 20 ng/ml recombinant human M-CSF, 30 ng/ml recombinant human soluble osteoclast differentiation factor and 10% fetal calf serum for 2 and 7 days. Total RNA of osteoclast precursor cells were extracted using RNeasy kit. One ${\mu}g$ of total RNA was reverse transcribed in $42^{\circ}C$ for 30 minutes using SuperScriptII reverse transcriptase. Expression of transcribed receptors of each hormone and cytokine were traced with 1 ${\mu}l$ of cDNA solution by PCR amplification. Vitamin D receptor WAS found in cells cultured for 7 days. TNF-${\alpha}$ receptor was found in cells cultured for 2 days and amount of receptors were increased by 7 days. IL-1 type I receptor was not found in cells cultured 2 and 7 days. But, IL-1 receptor type II was found in cells cultured for 2 days. TGF-${\alpha},{\beta}$type I receptor was found in cells cultured 2 and 7 days, and amount of receptors were increased by 7 days of culture. These results implies Vitamin D and cytokines can affect osteoclasts directly, and affecting period in differentiation cycle of osteoclasts is different by Vitamin D and cytokines.

Effect of 5-FU and MTX on the Expression of Drug-resistance Related Cancer Stem Cell Markers in Non-small Cell Lung Cancer Cells

  • Yi, Hee;Cho, Hee-Jung;Cho, Soo-Min;Jo, Kyul;Park, Jin-A;Lee, Soo-Han;Chang, Byung-Joon;Kim, Jin-Suk;Shin, Ho-Chul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.1
    • /
    • pp.11-16
    • /
    • 2012
  • Cancer stem cells (CSCs) are often characterized by the elevated expression of drug-resistance related stem-cell surface markers, such as CD133 and ABCG2. Recently, we reported that CSCs have a high level of expression of the IL-6 receptor (IL-6R). The purpose of this study was to investigate the effect of anticancer drugs on the expression of the drug resistance-related cancer stem cell markers, ABCG2, IL-6R, and CD133 in non-small cell lung cancer (NSCLC) cell lines. A549, H460, and H23 NSCLC cell lines were treated with the anticancer drugs 5-fluorouracil (5-FU; $25{\mu}g/ml$) and methotrexate (MTX; $50{\mu}g/ml$), and the expression of putative CSC markers was analyzed by fluorescent activated cell sorter (FACS) and the gene expression level of abcg2, il-6r and cd133 by reverse transcriptase-polymerase chain reaction (RT-PCR). We found that the fraction of ABCG2-positive(+) cells was significantly increased by treatment with both 5-FU and MTX in NSCLC cells, and the elevation of abcg2, il-6r and cd133 expressions in response to these drugs was also confirmed using RT-PCR. Also, the number of IL-6R(+) cells was increased by MTX in the 3 cell lines mentioned and increased by 5-FU in the H460 cell line. The number of CD133(+) cells was also significantly increased by both 5-FU and MTX treatment in all of the cell lines tested. These results indicate that 5-FU and MTX considerably enhance the expression of drug-resistance related CSC markers in NSCLC cell lines. Thus, we suggest that antimetabolite cancer drugs, such as 5-FU and MTX, can lead to the propagation of CSCs through altering the expression of CSC markers.

Characterization of Acetylcholine-induced Currents in Male Rat Pelvic Ganglion Neurons

  • Park, Joong-Hyun;Park, Kyu-Sang;Cha, Seung-Kyu;Lee, Keon-Il;Kim, Min-Jung;Park, Jong-Yeon;Kong, In-Deok;Lee, Joong-Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.4
    • /
    • pp.219-225
    • /
    • 2004
  • The pelvic ganglia provide autonomic innervations to the various urogenital organs, such as the urinary bladder, prostate, and penis. It is well established that both sympathetic and parasympathetic synaptic transmissions in autonomic ganglia are mediated mainly by acetylcholine (ACh). Until now, however, the properties of ACh-induced currents and its receptors in pelvic ganglia have not clearly been elucidated. In the present study, biophysical characteristics and molecular nature of nicotinic acetylcholine receptors (nAChRs) were studied in sympathetic and parasympathetic major pelvic ganglion (MPG) neurons. MPG neurons isolated from male rat were enzymatically dissociated, and ionic currents were recorded by using the whole cell variant patch clamp technique. Total RNA from MPG neuron was prepared, and RT-PCR analysis was performed with specific primers for subunits of nAChRs. ACh dose-dependently elicited fast inward currents in both sympathetic and parasympathetic MPG neurons $(EC_{50};\;41.4\;{\mu}M\;and\;64.0\;{\mu}M,\;respectively)$. ACh-induced currents showed a strong inward rectification with a reversal potential near 0 mV in current-voltage relationship. Pharmacologically, mecamylamine as a selective antagonist for ${\alpha}3{\beta}4$ nAChR potently inhibited the ACh-induced currents in sympathetic and parasympathetic neurons $(IC_{50};\;0.53\;{\mu}M\;and\;0.22\;{\mu}M,\;respectively)$. Conversely, ${\alpha}-bungarotoxin$, ${\alpha}-methyllycaconitine$, and $dihydro-{\beta}-erythroidine$, which are known as potent and sensitive blockers for ${\alpha}7$ or ${\alpha}4{\beta}2$ nAChRs, below micromolar concentrations showed negligible effect. RT-PCR analysis revealed that ${\alpha}3$ and ${\beta}4$ subunits were predominantly expressed in MPG neurons. We suggest that MPG neurons have nAChRs containing ${\alpha}3$ and ${\beta}4$ subunits, and that their activation induces fast inward currents, possibly mediating the excitatory synaptic transmission in pelvic autonomic ganglia.

Combined Skin Moisturization of Liposomal Serine Incorporated in Hydrogels Prepared with Carbopol ETD 2020, Rhesperse RM 100 and Hyaluronic Acid

  • Kim, Hyeongmin;Ro, Jieun;Barua, Sonia;Hwang, Deuk Sun;Na, Seon-Jeong;Lee, Ho Sung;Jeong, Ji Hoon;Woo, Seulki;Kim, Hyewon;Hong, Bomi;Yun, Gyiae;Kim, Joong-Hark;Yoon, Young-Ho;Park, Myung-Gyu;Kim, Jia;Sohn, Uy Dong;Lee, Jaehwi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.6
    • /
    • pp.543-547
    • /
    • 2015
  • We investigated the combined moisturizing effect of liposomal serine and a cosmeceutical base selected in this study. Serine is a major amino acid consisting of natural moisturizing factors and keratin, and the hydroxyl group of serine can actively interact with water molecules. Therefore, we hypothesized that serine efficiently delivered to the stratum corneum (SC) of the skin would enhance the moisturizing capability of the skin. We prepared four different cosmeceutical bases (hydrogel, oil-in-water (O/W) essence, O/W cream, and water-in-oil (W/O) cream); their moisturizing abilities were then assessed using a $Corneometer^{(R)}$. The hydrogel was selected as the optimum base for skin moisturization based on the area under the moisture content change-time curves (AUMCC) values used as a parameter for the water hold capacity of the skin. Liposomal serine prepared by a reverse-phase evaporation method was then incorporated in the hydrogel. The liposomal serine-incorporated hydrogel (serine level=1%) showed an approximately 1.62~1.77 times greater moisturizing effect on the skin than those of hydrogel, hydrogel with serine (1%), and hydrogel with blank liposome. However, the AUMCC values were not dependent on the level of serine in liposomal serine-loaded hydrogels. Together, the delivery of serine to the SC of the skin is a promising strategy for moisturizing the skin. This study is expected to be an important step in developing highly effective moisturizing cosmeceutical products.

Detection of Human Taurine Transporter and Production of Monoclonal Antibody

  • An, Hye-Suk;Han, Hee-Chang;Lee, Sun-Min;Park, Taesun;Park, Kun-Koo;Kim, Ha-Won
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2001.11a
    • /
    • pp.102-102
    • /
    • 2001
  • Taurine (2-ethaneaminosulfonic acid) is one of the major intracellular ${\beta}$ -amino acids in mammals and is required for a number of biological processes including membrane stabilization, osmoregulation, antioxidation, detoxification, modulation of calcium flux and neurornodulation. The taurine transporter (TAUT) which contains 12 hydrophobic membrane-spanning domains has been cloned from dog kidney, rat brain, mouse brain, human thyroid, placenta and retina. In this study, The TAUT cDNA from the human intestinal epithelial cell, HT-29 was cloned and sequenced. Reverse-transcription polymerase chain reaction (RT-PCR) was performed to amplify partial cDNA encoding human intestinal TAUT. The coding region of the PCR product was 732 bp long. The primers were designed to encode highly conserved amino acid sequences near the transmembrane domains III (IPYFIFLF) and Ⅵ (KYKYNSYR) both in human and mouse. The TAUT cDNA amplified was ligated into the pGEX 4T-1 expression vector. The resulting sequence of human intestinal TAUT cDNA (Accession number of NCBI Genebank is AF346763) was identical to the sequences of the TAUTs previously determined in the human placenta and retina except 3 base pairs from that of the reported human thyroid. TAUT specific antibodies were generated to use them as biological tools in the studies of the biological role of TAUT. Peptides of 149-162 amino acid residue (14 amino acids) of the TAUT were synthesized. The synthetic peptide used in this study was LFQSFQKELPWAHC. This region was chosen not only to avoid putative glycosylation sites but also to exclude regions of known homology with GABA transporters in the extracellular hydrophilic domains. The synthetic peptide, TAUT-1 was conjugated with carrier protein, kehole lympet hemocyanin (KLH) to use as an antigen. When used for immunization on a rabbit to produce polyclonal antiserum, the conjugates elicited high -titered specific anti-TAUT-1 antibodies, which reacted well with the ovalbumin (OVA) conjugated peptides in ELISA. The KLH-conjugated peptide was also used as immunizing antigen in BALB/c mice to produce TAUT specific monoclonal antibodies. From the culture supernatant of the hybridoma, the specificity of anti-TAUT-1 monoclonal antibodies was confirmed by ELISA. Further applications of more tools in TAUT expression analysis will be performed such as western blotting and flow cytometry.

  • PDF

Rice Bran Phytic Acid Induced Apoptosis Through Regulation of Bcl-2/Bax and p53 Genes in HepG2 Human Hepatocellular Carcinoma Cells

  • Al-Fatlawi, Atheer Abbas;Al-Fatlawi, Anees Abbas;Irshad, Md.;Zafaryab, Md.;Alam Rizvi, M. Moshahid;Ahmad, Ayaz
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.8
    • /
    • pp.3731-3736
    • /
    • 2014
  • Phytic acid (PA) has been reported to have positive nutritional benefits and prevent cancer formation. This study investigated the anticancer activity of rice bran PA against hepatocellular carcinoma (HepG2) cells. Cytotoxicty of PA (0.5 to 4mM) was examined by MTT and LDH assays after 24 and 48h treatment. Apoptotic activity was evaluated by expression analysis of apoptosis-regulatory genes [i.e. p53, Bcl-2, Bax, Caspase-3 and -9] by reverse transcriptase-PCR and DNA fragmentation assay. The results showed antioxidant activity of PA in Fe3+ reducing power assay ($p{\leq}0.03$). PA inhibited the growth of HepG2 cells in a concentration dependent manner ($p{\leq}0.04$). After 48h treatment, cell viability was recorded 84.7, 74.4, 65.6, 49.6, 36.0 and 23.8% in MTT assay and 92.6, 77.0%, 66.8%, 51.2, 40.3 and 32.3% in LDH assay at concentrations of 1, 1.5, 2.0, 2.5, 3.0, and 3.5mM, respectively. Hence, treatment of PA for 24h, recorded viability of cells 93.5, 88.6, 55.5, 34.6 and 24.4% in MTT assay and 94.2, 86.1%, 59.7%, 42.3 and 31.6%, in LDH assay at concentrations of 1, 2.2, 3.0, 3.6 and 4.0mM, respectively. PA treated HepG2 cells showed up-regulation of p53, Bax, Caspase-3 and -9, and down-regulation of Bcl-2 gene ($p{\leq}0.01$). At the $IC_{50}$ (2.49mM) of PA, the p53, Bax, Caspase-3 and-9 genes were up-regulated by 6.03, 7.37, 19.7 and 14.5 fold respectively. Also, the fragmented genomic DNA in PA treated cells provided evidence of apoptosis. Our study confirmed the biological activity of PA and demonstrated growth inhibition and induction of apoptosis in HepG2 cells with modulation of the expression of apoptosis-regulatory genes.

cAMP induction by ouabain promotes endothelin-1 secretion via MAPK/ERK signaling in beating rabbit atria

  • Peng, Li-qun;Li, Ping;Zhang, Qiu-li;Hong, Lan;Liu, Li-ping;Cui, Xun;Cui, Bai-ri
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.1
    • /
    • pp.9-14
    • /
    • 2016
  • Adenosine 3',5'-cyclic monophosphate (cAMP) participates in the regulation of numerous cellular functions, including the $Na^+-K^+$-ATPase (sodium pump). Ouabain, used in the treatment of several heart diseases, is known to increase cAMP levels but its effects on the atrium are not understood. The aim of the present study was to examine the effect of ouabain on the regulation of atrial cAMP production and its roles in atrial endothelin-1 (ET-1) secretion in isolated perfused beating rabbit atria. Our results showed that ouabain ($3.0{\mu}mol/L$) significantly increased atrial dynamics and cAMP levels during recovery period. The ouabain-increased atrial dynamics was blocked by KB-R7943 ($3.0{\mu}mol/L$), an inhibitor for reverse mode of $Na^+-Ca^{2+}$ exchangers (NCX), but did not by L-type $Ca^{2+}$ channel blocker nifedipine ($1.0{\mu}mol/L$) or protein kinase A (PKA) selective inhibitor H-89 ($3.0{\mu}mol/L$). Ouabain also enhanced atrial intracellular cAMP production in response to forskolin and theophyline ($100.0{\mu}mol/L$), an inhibitor of phosphodiesterase, potentiated the ouabain-induced increase in cAMP. Ouabain and 8-Bromo-cAMP ($0.5{\mu}mol/L$) markedly increased atrial ET-1 secretion, which was blocked by H-89 and by PD98059 ($30{\mu}mol/L$), an inhibitor of extracellular-signal-regulated kinase (ERK) without changing ouabain-induced atrial dynamics. Our results demonstrated that ouabain increases atrial cAMP levels and promotes atrial ET-1 secretion via the mitogen-activated protein kinase (MAPK)/ERK signaling pathway. These findings may explain the development of cardiac hypertrophy in response to digitalis-like compounds.

Exendin-4 Improves Nonalcoholic Fatty Liver Disease by Regulating Glucose Transporter 4 Expression in ob/ob Mice

  • Kim, Seok;Jung, Jaehoon;Kim, Hwajin;Heo, Rok Won;Yi, Chin-Ok;Lee, Jung Eun;Jeon, Byeong Tak;Kim, Won-Ho;Hahm, Jong Ryeal;Roh, Gu Seob
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.4
    • /
    • pp.333-339
    • /
    • 2014
  • Exendin-4 (Ex-4), a glucagon-like peptide-1 receptor (GLP-1R) agonist, has been known to reverse hepatic steatosis in ob/ob mice. Although many studies have evaluated molecular targets of Ex-4, its mechanism of action on hepatic steatosis and fibrosis has not fully been determined. In the liver, glucose transporter 4 (GLUT4) is mainly expressed in hepatocytes, endothelial cells and hepatic stellate cells (HSCs). In the present study, the effects of Ex-4 on GLUT4 expression were determined in the liver of ob/ob mice. Ob/ob mice were treated with Ex-4 for 10 weeks. Serum metabolic parameters, hepatic triglyceride levels, and liver tissues were evaluated for hepatic steatosis. The weights of the whole body and liver in ob/ob mice were reduced by long-term Ex-4 treatment. Serum metabolic parameters, hepatic steatosis, and hepatic fibrosis in ob/ob mice were reduced by Ex-4. Particularly, Ex-4 improved hepatic steatosis by enhancing GLUT4 via GLP-1R activation in ob/ob mice. Ex-4 treatment also inhibited hepatic fibrosis by decreasing expression of connective tissue growth factor in HSCs of ob/ob mice. Our data suggest that GLP-1 agonists exert a protective effect on hepatic steatosis and fibrosis in obesity and type 2 diabetes.