• Title/Summary/Keyword: Reverse osmosis membrane

Search Result 321, Processing Time 0.022 seconds

Effect of Pretreated Seawater Quality on SDI in SWRO Desalination Process (SWRO 해수담수화 공정에서 전처리된 수질조건이 SDI에 미치는 영향)

  • Son, Dong-Min;Kang, Lim-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.3
    • /
    • pp.200-205
    • /
    • 2013
  • Pretreatment process is the critical step of RO (Reverse Osmosis) membrane desalination plant in order to prevent RO membrane fouling. The pretreatment as a key component of RO process must be designed to produce a constant and high quality RO feedwater which has low silt density index (SDI). This experiment was conducted to assess parameters affecting SDI value, such as pH, seawater turbidity, temperature, and coagulant dose. The experimental results indicated that the source seawater turbidity did cause little effects on SDI values of filtered water. The 0.45 um hydrophilic membrane was more appropriate than the hydrophobic membrane for measuring SDI. The SDI value was increased with decreasing pH under the condition of below pH 7.0. In addition, the water temperature significantly affected the SDI values, showing higher SDI value with lower water temperature.

Effects of Antiscalant on Inorganic Fouling in Seawater Reverse Osmosis Membrane Processes (해수담수화 역삼투막 공정의 무기질오염에 대한 스케일 억제제 효과 연구)

  • Kang, Nam-Wook;Lee, Seock-Heon;Kweon, Ji-Hyang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.9
    • /
    • pp.677-685
    • /
    • 2011
  • The reverse osmosis membrane processes have several operational problems. Fouling by inorganic scale occurs on membrane surface due to increases in concentrations over solubility by retaining ions on feed side of the membrane. Inorganic scales could be controlled by antiscalants or acid addition. In this study, three antiscalants having different characteristics were selected and evaluated on efficiency of $CaCO_3$ scale control. The $CaCO_3$ scale was inhibited by the antiscalants : 0.4 mg/L for SHMP, 0.6 mg/L for Spectra Guard, and 3 mg/L for Flocon 150 N. Increasing concentration factors of simulated sea water resulted in increases in antiscalant doses for the scale control. The increases in doses were positively proportional to the concentrate factors used in this study. Spectra Guard, one of the polyacrylate type antiscalants, was the most effective to control $CaCO_3$ scale. The antiscalants with the different scale inhibition time and doses implied the different control mechanisms.

Development and Applications of Membrane Technology in Korea

  • Noh, S.H.
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.10a
    • /
    • pp.74-79
    • /
    • 1995
  • In the last 10 years, membrane science and technology in Korea have grown fast in terms of basic research and process applications. Even the first large commercial membrane plant in Korea was an ion-exchange membrane process built in 1975 for the production of table salt with an annual capacity of 150,000 tons of salt, membrane processes could not draw general interests from industry not until 1987 when a reverse osmosis plant for the production of process water with a capacity of 10,000 m$^3$/day was built by Kugdong Petroleum Co. Today, the production of water by RO over the capacity of 140,000 m$^3$/day is in operation or under construction in Korea. Consumption of ultra pure water increases sharply in recent years mainly due to the rapid expansion of semiconductor industry and the introduction of ultra high pressure boilers for power plants.

  • PDF

Graphene Oxide Incorporated Antifouling Thin Film Composite Membrane for Application in Desalination and Clean Energy Harvesting Processes (해수담수화와 청정 에너지 하베스팅을 위한 산화 그래핀 결합 합성 폴리머 방오 멤브레인)

  • Lee, Daewon;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.31 no.1
    • /
    • pp.16-34
    • /
    • 2021
  • Water supplies are decreasing in comparison to increasing clean water demands. Using nanofiltration is one of the most effective and economical methods to meet the need for clean water. Common methods for desalination are reverse osmosis and nanofiltration. However, pristine membranes lack the essential features which are, stability, economic efficiency, antibacterial and antifouling performances. To enhance the properties of the pristine membranes, graphene oxide (GO) is a promising and widely researched material for thin film composites (TFC) membrane due to their characteristics that help improve the hydrophilicity and anti-fouling properties. Modification of the membrane can be done on different layers. The thin film composite membranes are composed of three different layers, the top filtering active thin polyamide (PA) layer, supporting porous layer, and supporting fabric. Forward osmosis (FO) process is yet another energy efficient desalination process, but its efficiency is affected due to biofouling. Incorporation of GO enhance antibacterial properties leading to reduction of biofilm formation on the membrane surface. Pressure retarded osmosis (PRO) is an excellent process to generate clean energy from sea water and the biofouling of membrane is reduced by introduction of GO into the active layer of the TFC membrane. Different modifications on the membranes are being researched, each modification with its own advantages and disadvantages. In this review, modifications of nanofiltration membranes and their composites, characterization, and performances are discussed.

Development of SWRO-PRO hybrid process simulation and cost estimation program (역삼투-압력지연삼투 조합공정 공정모사 및 비용예측 프로그램 개발)

  • Choi, Yongjun;Shin, Yonghyun;Lee, Sangho;Kim, Seung-Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.3
    • /
    • pp.299-312
    • /
    • 2016
  • The main objective of this paper is to develop computer simulation program for performance evaluation and cost estimation of a reverse osmosis (RO) and pressure-retarded osmosis (PRO) hybrid process to propose guidelines for its economic competitiveness use in the field. A solution-diffusion model modified with film theory and a simple cost model was applied to the simulation program. Using the simulation program, the effects of various factors, including the Operating conditions, membrane properties, and cost parameters on the RO and RO-PRO hybrid process performance and cost were examined. The simulation results showed that the RO-PRO hybrid process can be economically competitive with the RO process when electricity cost is more than 0.2 $/kWh, the PRO membrane cost is same as RO membrane cost, the power density is more than $8W/m^2$ and PRO recovery is same as 1/(1-RO recovery).

A study on the pulp and paper mills waste water Recycling by VSEP membrane system (진동막 분리장치를 이용한 제지폐수의 재이용에 관한 연구)

  • 지은상;김재우;신대윤
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.1
    • /
    • pp.40-46
    • /
    • 2001
  • Conventional membrane systems was difficult to treatment for pulp and paper mills waste warter. Technological advances in membrane filtration systems have created opportunity for pulp and paper mills to treat effluent streams in order to meet stricter environmental constraints. "Vibratory Shear Enhanced Processing(VSEP)" developed by new logic international makes if possible to filter effluent streams without the fouling problems exhibited by conventional membrane systems. Various kinds of waste water occurred to and paper mills experiment with "VSEP" set up conventional membrane. The results were as followes : Excepting ultra filter($0.1{\mu}\textrm{m}$ Teflon, C-100, G-50), Nano filter(NTR-7450, DS-5, PVD-1) and reverse osmosis(ACM-4) was treated with very excellent weight of treatment, electric conductivity, removal COD, TDS, turbidity.

  • PDF

Membrane Technology for Water Treatment in Korea

  • Yoo, Je-Kang;Lee, Kyu-hyun
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.10a
    • /
    • pp.94-100
    • /
    • 1995
  • In recent years it has become necessary to design water management system to minimize water consumption as well as satisfy more stringent environmental requirements. This is mainly due to the seasonal water shortage and environmental problems on water pollution that have taken place at many industrialized regions in Korea. Accordingly, membrane technology in Korea is finding increasing application in the water industry because it has been found to be effective and economic treatment method compared with conventional technology. The membrane processes with the greatest potential for water and wastewater treatment are microfiltration(MF), ultrafiltration(UF), nanofiltration(NF) and reverse osmosis (RO), which utilize pressure differentials.

  • PDF

MEMBRANE PROCESSES IN ENVIRONMENTAL TECHNOLOGY

  • Blume, I.;Smolders, C.A.
    • Membrane Journal
    • /
    • v.2 no.1
    • /
    • pp.1-20
    • /
    • 1992
  • Classical membrane processes like microfiltration (MF), ultrafiltration (UF) and reverse osmosis (RO) are being applied in the last years more frequently in environmental and effluent process problems. Newer technologies and developments like pervaporation (PV) and gas sepaxation (GS) recently found commercial applications in the treatment of waste waters and gas streams. The incentive here is either the clean-up from organic components to comply with federal emission regulations or the recovery of the organics for economical reasons. Processes still in their development stage are combinations of chemical reactions with membrane processes to separate and treat $SO_x$ and $NO_x$ laden waste gas streams in the clean-up of stack-gases. In this paper we will first give a short overview of the more recent developments in MF, UF and RO. This is followed by a closer look on newer technologies applied in environmental problems. The applications looked at are the recovery of organic components from solvent laden gas streams and the separation of organic volatiles from aqueous waste waters via pervaporation. Technical solutions, the advantages and disadvantages of the processes and. where possible, cost estimations will be presented.

  • PDF

Preparation and Application of Nanofiltration Membranes (NF막 제조 및 응용공정)

  • 이규호;오남운;제갈종건
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.06a
    • /
    • pp.135-153
    • /
    • 1998
  • Nanofiltration (NF) is a recently introduced term in membrane separation. In 1988, Eriksson was one of the first authors using the word 'nanofiltration' explicitly. Some years before, FilmTech started to use this term for their NF50 membrane which was supposed to be a very loose reverse osmosis membrane or a very tight ultrafiltration membrane. Since then, this term has been introduced to indicate a specific boundary of membrane technology in between ultrafiltration and reverse osmosis. The application fields of the NF membranes are very broad as follows: Demeneralizing water, Cleaning up contaminated groundwater, Ultrapure water production, Treatment of effleunts containing heavy metals, Offshore oil platforms, Yeast production, Pulp and paper mills, Textile production, Electroless copper plating, Cheese whey production, Cyclodextrin production, Lactose production. The earliest NF membrane was made by Cadotte et al, using piperazine and trimesoyl chloride as monomers for the formation of polyamide active layer of the composite type membrane. They coated very thin interfacially potymerized polyamide on the surface of the microporous polysulfone supports. The NF membrane exhibited low rejections for monovalent anions (chloride) and high rejections for bivalent anions (sulphate). This membrane was called NS300. Some of the earliest NF membranes, like the NF40 membrane of FilmTech, the NTR7250 of Nitto-Denko and the UTC20 and UTC60 of Toray, are formed by a comparable synthesis route as the NS300 membrane. Commercially available NF membranes nowadays are as follows: ASP35 (Advanced Membrane Technology), MPF21; MPF32 (Kiryat Weizmann), UTC20; UTC60; UTC70; UTC90 (Toray), CTA-LP; TFCS (Fluid Systems), NF45; NF70 (FilmTec), BQ01; MX07; HG01; HG19; SX01; SX10 (Osmonics), 8040-LSY-PVDI (Hydranautics), NF CA30; NF PES 10 (Hoechst), WFN0505 (Stork Friesland). The typical ones among the commercially available NF membranes are polyamide composite membrane consisting of interfacially polymerized polyamide active layer and microporous support. While showing high water fluxes and high rejections of multivalent ions and small organic molecules, these membranes have relatively low chemical stability. These membranes have low chlorine tolerance and are unstable in acid or base solution. This chemical instability is appearing to be a big obstacle for their applications. To improve the chemical stability, we have tried, in this study, to prepare chemically stable NF membranes from PVA. The ionomers and interfacially polymerized polyamide were used for the modification of'the PVA membranes. For the detail study of the active layer, homogeneous NF membranes made only from active layer materials were prepared and for the high performance, composite type NF membranes were prepared by coating the active layer materials on microporous polysulfone supports.

  • PDF

Removal potential of dissolved gas in gas hydrate desalination process by reverse osmosis (역삼투막을 이용한 가스하이드레이트 해수담수화 공정 내 용존 가스의 제거 가능성 평가)

  • Ryu, Hyunwook;Kim, Minseok;Lim, Jun-Heok;Kim, Joung Ha;Lee, Ju Dong;Kim, Suhan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.6
    • /
    • pp.635-643
    • /
    • 2016
  • Gas hydrate (GH)-based desalination process have a potential as a novel unit desalination process. GHs are nonstoichiometric crystalline inclusion compounds formed at low temperature and a high pressure condition by water and a number of guest gas molecules. After formation, pure GHs are separated from the remaining concentrated seawater and they are dissociated into guest gas and pure water in a low temperature and a high pressure condition. The condition of GH formation is different depending on the type of guest gas. This is the reason why the guest gas is a key to success of GH desalination process. The salt rejection of GH based desalination process appeared 60.5-93%, post treatment process is needed to finally meet the product water quality. This study adopted reverse osmosis (RO) as a post treatment. However, the test about gas rejection by RO process have to be performed because the guest gas will be dissolved in a GH product (RO feed). In this research, removal potential of dissolved gas by RO process is performed using lab-scale RO system and GC/MS analysis. The relation between RO membrane characteristics and gas removal rate were analyzed based on the GC/MS measurement.