• Title/Summary/Keyword: Reverse osmosis (RO) membrane

Search Result 180, Processing Time 0.023 seconds

Restoration of Membrane Performance for Damaged Reverse Osmosis Membranes through in-situ Healing (손상된 역삼투막의 in-situ 힐링을 통한 막 성능 복원)

  • Yun, Won Seob;Rhim, Ji Won;Cho, Young Ju
    • Membrane Journal
    • /
    • v.29 no.2
    • /
    • pp.96-104
    • /
    • 2019
  • The purpose of this paper is whether or not the in-situ restoration of the reverse osmosis (RO) membranes which its membrane function is lost is possible. The damaged RO membranes are double coated through the salting-out method by the poly(styrene sulfonic acid) sodium salt as the cationic exchange polymer and the polyethyleneimine as the anionic exchange polymer and also conducted the opposite order of the coating materials. And according to the concentration, time and ionic strength, the flux and rejection are measured for the coated membranes. Then the best coating condition is to apply for the RO membrane module of the household water purifier to know the possibility of the in-situ restoration for the commercial module. When the condition of the PEI 30,000 ppm (IS = 0.1)/PSSA 20,000 ppm (IS = 0.7) is applied, the rejection was enhance from 69% for the damaged module to 86% (90% for the pristine module).

Boron removal from model water by RO and NF membranes characterized using S-K model

  • Kheriji, Jamel;Tabassi, Dorra;Bejaoui, Imen;Hamrouni, Bechir
    • Membrane and Water Treatment
    • /
    • v.7 no.3
    • /
    • pp.193-207
    • /
    • 2016
  • Boron is one of the most problematic inorganic pollutants and is difficult to remove in water. Strict standards have been imposed for boron content in water because of their high toxicity at high concentrations. Technologies using membrane processes such as reverse osmosis (RO) and nanofiltration (NF) have increasingly been employed in many industrial sectors. In this work, removal of boron from model water solutions was investigated using polyamide reverse osmosis and nanofiltration membranes. RO-AG, RO-SG, NF-90 and NF-HL membranes were used to reduce the boron from model water at different operational conditions. To understand the boron separation properties a characterization of the four membranes was performed by determining the pure water permeability, surface charge and molecular weight cut-off. Thereafter, the effect of feed pressure, concentration, ionic strength, nature of ions in solution and pH on the rejection of boron were studied. The rejection of boron can reach up to 90% for the three membranes AG, SG and NF-90 at pH = 11. The Spiegler-Kedem model was applied to experimental results to determine the reflection coefficient of the membrane ${\sigma}$ and the solute permeability $P_s$.

Positron Annihilation Lifetime Spectroscopic Analysis to Demonstrate Flux-Enhancement Mechanism of Aromatic Polyamide Reverse Osmosis Membranes (양전자 소멸시간 분광분석을 통한 방향족 폴리아미드 역삼투 분리막의 수투과 향상 메커니즘 제시)

  • Kim, Sung-Ho;Kwak, Seung-Yeop
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05b
    • /
    • pp.82-85
    • /
    • 2004
  • Flux-enhancement mechanism of thin-film-composite (TFC) membranes for the reverse comosis (RO) process was newly explained by positron annihilation lifetime spectroscopy (PALS) that has been found to be applied for detecting molecular vacancies or pores having sizes that are equivalent to salt or hydrate ions in RO membrane.(omitted)

  • PDF

Evaluation of FO membrane performance for each type of pre-treatment from WWTP secondary effluents (하수방류수의 전처리 조건별 FO막의 운전성능평가)

  • Jeong, Junwon;Kim, Jihoon;Kim, Geonyoub;Park, Junyoung;Kim, Hyungsoo;Kim, Hyungsook
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.2
    • /
    • pp.131-137
    • /
    • 2016
  • The development of alternative water resources has emerged as an effective method for solving drought of water resources due to extreme weather and increase in water consumption. Recently, in Korea, there has been active research on reverse osmosis desalination technology, wastewater reuse using forward osmosis membranes, and the forward osmosis(FO)-reverse osmosis(RO) hybrid process combining these two technologies. In this study, the basic performance of FO membranes manufactured by three domestic and international manufactures such as Microfilter Co., Ltd., Toray Chemical Korea Inc., and Hydration Technologies Inc., were investigated for wastewater reuse. In addition, as an experiment to select feed solution, the selected membranes were operated 48 consecutive hours using three secondary effluents pretreated by the UF membrane with a pore size of $0.1{\mu}m$ and auto strainer with pore sizes of $1{\mu}m$ and $100{\mu}m$ as feed solution. Although there was not much difference in the operating performance. Thus, the treated water using the $100{\mu}m$ auto strainer was selected as feed solution applied to the assessment.

Comprehensive Analysis of Major Factors Associated with the Performance of Reverse Osmosis Desalination Plant for Energy-saving (에너지 소모를 고려한 역삼투 해수담수화 플랜트 주요 성능인자 영향 분석)

  • Kim, Jihye;Lee, Kyung-Hyuk;Lim, Jae-Lim
    • Membrane Journal
    • /
    • v.29 no.6
    • /
    • pp.314-322
    • /
    • 2019
  • A worsened drought in Chungnam province of Korea due to climate change and increasing water demand at Daesan industrial complex have motivated the 100,000 ㎥/d seawater desalination project. In this study, therefore, the comprehensive analysis of parameters affecting the reverse osmosis (RO) performance was conducted. Under the various conditions of feedwater salinity and temperature in Daesan, energy consumption was calculated as 2.39 ± 0.13 kWh/㎥. The decrease in membrane flux and recovery rate positively impacted annual operation cost. The average total dissolved solids (TDS) of the permeate and energy consumption with highly permeable membrane according to the membrane manufacturer were 3.84 mg/L and 2.22 ± 0.13 kWh/㎥, respectively. In addition, energy saving up to 0.29 kWh/㎥ or cost reduction of membrane module up to 15.6% is expected by changing the RO configuration from full two pass to partial or split partial two pass.

Effect of MWCNTs/PSf support layer on the performance of polyamide reverse osmosis membrane (탄소나노튜브가 첨가된 폴리술폰 지지체가 폴리아미드 역삼투막의 성능에 미치는 영향)

  • Min, Choong-Sik;Kim, Seung-Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.2
    • /
    • pp.127-137
    • /
    • 2020
  • In this study, a MWCNT(multi-wall carbon nanotube) was added to polysulfone(PSf) support layer to improve flux of TFC(thin film composite) RO(reverse osmosis) membrane. Two different kinds of MWCNT were used. Surfaces of some MWCNTs were modified hydrophilically through acid treatment, while those of other MWCNTs were modified through heat treatment to maintain their hydrophobicity. MWCNT/PSf support layer was prepared by adding PSf to the NMP mixed solvent containing 0.1 wt% MWCNTs using a phase inversion method. The surface porosity of the MWCNT/PSf support increased by 42~46% while its surface pore size being maintained. The TFC RO membrane made of MWCNT/PSf support layer showed a 20% flux increase while its salt rejection characteristics is sustained. In addition, the MWCNT/PSf support layer has better mechanical stability than the PSf support layer, there resulting in an increased resistance of flux reduction due to physical pressure.

Comparison of membrane distillation with reverse osmosis process for the treatment of anaerobic digestate of livestock wastewater (가축분뇨 혐기 소화액 처리를 위한 막 증발과 역삼투 공정 성능 비교)

  • Kim, Seunghwan;Cho, Jinwoo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.4
    • /
    • pp.259-266
    • /
    • 2020
  • In this study, a pilot-scale (3 ㎥/day) membrane distillation (MD) process was operated to treat digestate produced from anaerobic digestion of livestock wastewater. In order to evaluate the performance and energy cost of MD process, it was compared with the pilot scale (10 ㎥/day) reverse osmosis (RO) process, expected competitive process, under same feed condition. As results, MD process shows stable permeate flux (average 10.1 L/㎡/hr) until 150 hours, whereas permeate flux of RO process was decreased from 5.3 to 1.5 L/㎡/hr within 24 hours. In the case of removal of COD, TN, and TP, MD process shows a high removal rate (98.7, 93.7, and 99% respectively) stably until 150 hours. However, in the case of RO process, removal rate was decreased from 91.6 to 69.5% in COD and from 93.7 to 76.0% in TP during 100 hours of operation. Removal rate of TN in RO process was fluctuated in the range of 34.5-62.9% (average 44.6%) during the operation. As a result of energy cost analysis, MD process using waste heat for heating the feed shows 18% lower cost compare with RO process. Thus, overall efficiency of the MD process is higher then that of the RO process in terms of permeate flux, removal rate of salts, and operating cost (in the case of using waste heat) in treating the anaerobic digestate of livestock wastewater.

Removal Mechanisms of BTEX Compounds by RO/NF Membrane Processes (RO/NF막 공정을 이용한 BTEX 물질의 제어 특성 평가)

  • Jang, Hyuewon;Park, Chanhyuk;Hong, Seungkwan;Yoon, Yeomin;Jung, Jin-Young;Chung, Yun-Chul
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.926-932
    • /
    • 2006
  • A series of bench-scale membrane filtration experiments were performed to systematically investigate the removal mechanisms of reverse osmosis (RO) and nanofiltration (NF) membranes for BTEX (benzene, toluene, ethylene, xylene), trichloroethylene (TCE) and tetrachloroethylene (PCE). The molecular weight of these organic compounds ranged from 78 to 166 dalton. The rejection of organic compounds by RO/NF membranes varied significantly from 59.6 to 99.2% depending on solute and membrane types. Specifically, experimental results demonstrated that the removal efficiency of RO/NF membranes increased as solute molecular characteristics such as W/L (molecular width/length) ${\times}$ $M_W$ (molecular weight) and octanol-water partition coefficient increased. This observation suggested that the rejection of small organic compounds by RO/NF membranes was determined by the combined effect of physical (molecular size and shape) and chemical (hydrophobicity) properties.

Pretreatment of Acrylic Wastewater and Application of UF/RO Processes (Acrylic폐수의 전처리 및 UF/RO공저의 적용)

  • 이광현
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2001.05a
    • /
    • pp.135-138
    • /
    • 2001
  • Acrylic wastewater flux was discussed using modules of ultrafiltration hollow fiber and reverse osmosis spiral wound. The optimum backflushing times of membranes were decided and the degree of fouling was discussed with operating time. Permeate flux was decreased rapidly at 12hrs. Separation processes with ultrafiltration and reverse osmosis membranes were not suitable to remove COD and TDS. The improvement of pretreatment processes was needed.

  • PDF

Removal of Virus in Home Drinking Water Treatment Systems (가정용 정수시스템의 바이러스 제거)

  • 김영진;오남순;정문호
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.4
    • /
    • pp.45-48
    • /
    • 2000
  • Reverse osmosis filtration(RO) system and ultrafiltration(UF) system are principally use for domestic home drinking water treatment systems. The object of this study is to make a comparison between two systems in terms of theirs abilities to remove RNA coilphage QB as an indicator of pathogenic enteroviruses. The virus removal ratio of RO system was 99.999%, which was higher than EPA virus treatment guideline(99.99%). In the course of filtration, removal ratios of sediment filter, pre-carbon filter, reverse osmosis membrane and post-carbon filter were 75.000%, 93.208%, 99.997% and 99.999%, repectively. In case of UF system, virus removal ratio was 99.708%. Removal ratios of sediment filter, pre-carbon filter, post-carbon filter and ultrafiltration membration membrane were 71.038%, 91.530%, 98.283% and 99.708%, respecively, in UF steps. Therefore, RO system is more effective than UF system in virus removal.

  • PDF