• Title/Summary/Keyword: Reverse genetics

Search Result 84, Processing Time 0.029 seconds

Proteolysis of the Reverse Transcriptase of Hepatitis B Virus by Lon Protease in E. coli

  • Han, Joo-Seok;Park, Jae-Yong;Hwang, Deog-Su
    • Animal cells and systems
    • /
    • v.5 no.3
    • /
    • pp.195-198
    • /
    • 2001
  • Hepatitis B virus (HBV) polymerase, which possesses the activities of terminal binding, DNA polymerase, reverse transcriptase and RNaseH, has been shown to accomplish viral DNA replication through a pregenomic intermediate. Because the HBV polymerase has not been purified, the expression of HBV polymerase was examined in an E. coli expression system that is under the regulation of arabinose operon. The expressed individual domain containing terminal binding protein, polymerase, or RNaseH turned out to be insoluble. The activities of those domains were not able to be recovered by denaturation and renaturation using urea or guanidine-HCI. The expressed reverse transcriptase containing the polymerase and RNaseH domains became extensively degraded, whereas the proteolysis was reduced in a Ion- mutant. These results indicate that Lon protease proteolyzes the HBV reverse transcriptase expressed in E. coli.

  • PDF

Next-generation gene targeting in the mouse for functional genomics

  • Gondo, Yoichi;Fukumura, Ryutaro;Murata, Takuya;Makino, Shigeru
    • BMB Reports
    • /
    • v.42 no.6
    • /
    • pp.315-323
    • /
    • 2009
  • In order to elucidate ultimate biological function of the genome, the model animal system carrying mutations is indispensable. Recently, large-scale mutagenesis projects have been launched in various species. Especially, the mouse is considered to be an ideal model to human because it is a mammalian species accompanied with well-established genetic as well as embryonic technologies. In 1990', large-scale mouse mutagenesis projects firstly initiated with a potent chemical mutagen, N-ethyl-N-nitrosourea (ENU) by the phenotype-driven approach or forward genetics. The knockout mouse mutagenesis projects with trapping/conditional mutagenesis have then followed as Phase II since 2006 by the gene-driven approach or reverse genetics. Recently, the next-generation gene targeting system has also become available to the research community, which allows us to establish and analyze mutant mice carrying an allelic series of base substitutions in target genes as another reverse genetics. Overall trends in the large-scale mouse mutagenesis will be reviewed in this article particularly focusing on the new advancement of the next-generation gene targeting system. The drastic expansion of the mutant mouse resources altogether will enhance the systematic understanding of the life. The construction of the mutant mouse resources developed by the forward and reverse genetic mutagenesis is just the beginning of the annotation of mammalian genome. They provide basic infrastructure to understand the molecular mechanism of the gene and genome and will contribute to not only basic researches but also applied sciences such as human disease modelling, genomic medicine and personalized medicine.

Development of a highly effective T-DNA inserted mutant screening method in a Chinese cabbage (Brassica rapa L. spp. pekinensis) reverse genetics system

  • Lee, Gi-Ho;Kang, Yoon-Jee;Yi, Seul-Ki;Lim, Suk-Bin;Park, Young-Doo
    • Plant Biotechnology Reports
    • /
    • v.4 no.3
    • /
    • pp.201-211
    • /
    • 2010
  • We present a highly effective T-DNA inserted gene screening method as part of a reverse genetics model system using the Chinese cabbage (Brassica rapa L. spp. pekinensis). Three-step two-dimensional (2D) matrix strategies are potentially accurate and useful for the identification of specific T-DNA inserted mutants from a large population. To construct our Chinese cabbage model, we utilized a forward genetics screening approach for the abnormal phenotypes that were obtained from transgenic plants of Brassica rapa generated with Agrobacteria tumefaciens containing the pRCV2 vector. From one transgenic plant with an abnormal phenotype, we observed that the st1 gene (which is related to senescence-associated process proteins) contained a T-DNA fragment, and that its expression level was decreased. This T-DNA insert was then used as a control to construct an effective screening pool. As a result, the optimum template concentration was found to be 0.1-1 ng in our PCR strategy. For other conditions, positive changes to the Gibbs free energy prevented the formation of oligo dimers and hairpin loop structures, and autosegment extension gave better results for long fragment amplification. Using this effective reverse genetics screening method, only 23 PCR reactions were necessary to select a target gene from a pool of 100 individual DNAs. Finally, we also confirmed that the sequence we obtained from the above method was identical to the flanking sequence isolated by rescue cloning.

Detection of the BCR/abl Gene Rearrangement by Reverse Transcriptase Based Polymerase Chain Reaction

  • Lee, Kyung-Ok;Park, Young-Suk;Kim, Yong-Woo;Han, Jung-A;Kim, Yoon-Jung
    • BMB Reports
    • /
    • v.29 no.3
    • /
    • pp.241-247
    • /
    • 1996
  • The Philadelphia (Ph) chromosome is the single most intensively studied chromosome alteration characterizing a human malignancy. The specific genetic alteration of chronic myelogenous leukemia (CML) is the formation of the BCR/abl fusion gene in leukemic cells. The presence of the BCR/abl gene has important diagnostic and prognostic implications in CML. The detection of BCR/abl transcripts by reverse transcriptase based polymerase chain reaction (RT-PCR) was investigated in patients with CML in whom the Ph chromosome abnormality was documented by cytogenetic analysis. In a total of 68 CML patient cases, the Ph chromosome was found in 53 cases (77.9%) by cytogenetic analysis. On the other hand, sixty two cases (91.2%) were detected to have BCR/abl gene rearrangement Of these, b3a2 was 44 cases (64.7%) and b2a2 was 17 cases (25,0%). There was one case with both b3a2 and b2a2 (1.5%). Of the fifteen cases of Ph chromosome negative by cytogenetic anlaysis, the BCR/abl gene was observed in nine cases, The results of BCR/abl fusion gene confirmed by the direct sequencing method correlated well with PCR analysis, The amplified PCR products were detected by $1{\times}10^{-5}$ dilutions. In conclusion, PCR technique is sensitive, rapid and relatively simple for a laboratory test in detecting the BCR/abl fusion gene with CML regardless of the result of cytogenetic analysis.

  • PDF

Generation of heterologous proteins-expressing recombinant snakehead rhabdoviruses (rSHRVs) using reverse genetics

  • Kwak, Jun Soung;Ryu, Sujeong;Kim, Ki Hong
    • Journal of fish pathology
    • /
    • v.33 no.2
    • /
    • pp.163-169
    • /
    • 2020
  • Snakehead rhabdovirus (SHRV) is different from other fish novirhabdoviruses such as viral hemorrhagic septicemia virus (VHSV), infectious hematopoietic necrosis virus (IHNV), and hirame rhabdovirus (HIRRV) in that it replicates at high temperatures. Therefore, the delivery of foreign proteins to fish living at high water temperature would be possible by using recombinant SHRVs. In the present study, to evaluate the possible use of SHRV as a vehicle for foreign proteins delivery, we generated a recombinant SHRV that contains an enhanced-GFP (eGFP) gene between nucleoprotein (N) and phosphoprotein (P) genes (rSHRV-A-eGFP), and another recombinant SHRV expressing two heterologous genes by inserting an eGFP gene between N and P genes, and mCherry gene between P and M genes (rSHRV-AeGFP-BmCherry). Epithelioma papulosum cyprini (EPC) cells infected with the recombinant SHRVs showed strong fluorescence(s), suggesting the possible availability of recombinant SHRVs for the development of combined vaccines by expressing multiple foreign antigens.

Isolation of Deletion Mutants by Reverse Genetics in Caenorhabditis elegans

  • Park, Byung-Jae;Lee, Jin ll;Lee, Jiyeon;Kim, Sunja;Choi, Kyu Yeong;Park, Chul-Seung;Ahn, Joohong
    • Animal cells and systems
    • /
    • v.5 no.1
    • /
    • pp.65-69
    • /
    • 2001
  • Obtaining mutant animals is important for studying the function of a particular gene. A chemical mutagenesis was first carried out to generate mutations in C. elegans. In this study, we used ultraviolet-activated 4,5',8-trimethylpsoralen to induce small deletion mutations. A library of mutagenized worms was prepared for recovery of candidate animals and stored at $15^{\circ}C$ during screening instead of being made into a frozen stock library. In order to isolate deletion mutations in target genes, a polymerase chain reaction (PCR)-based screening method was used. As a result, two independent mutants with deletions of approximately 1.0 kb and 1.3 kb were isolated. This modified and improved reverse genetic approach was proven to be effective and practical for isolating mutant animals to study gene function at the organismal level.

  • PDF

Developing New Mammalian Gene Expression Systems Using the Infectious cDNA Molecular Clone of the Japanese Encephalitis Virus

  • Yun Sang-Im;Choi Yu-Jeong;Park Jun-Sun;Kim Seok-Yong;Lee Young-Min
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2003.05a
    • /
    • pp.83-86
    • /
    • 2003
  • Major advances in positive-sense RNA virus research have been facilitated by the development of reverse genetics systems. These systems consist of an infectious cDNA clone that encompasses the genome of the virus in question. This clone is then used as a template for the subsequent synthesis of infectious RNA for the generation of synthetic viruses. However, the construction of infectious cDNA for the Japanese encephalitis virus (JEV) has been repeatedly thwarted by the instability of its cDNA. As JEV is an important human pathogen that causes permanent neuropsychiatric sequelae and even fatal disease, a reliable reverse genetics system for this virus is highly desirable. The availability of this tool would greatly and the development of effective vaccines as well as facilitate studies into the basic biology of the virus, including the molecular mechanisms of viral replication, neurovirulence, and pathogenesis. We have successfully constructed a genetically stable infectious JEV cDNA containing full-length viral RNA genome. Synthetic RNA transcripts generated in vitro from the cDNA were highly infectious upon transfection into susceptible cells, and the cDNA remained stable after it had been propagated in E. coli for 180 generations. Using this infectious JEV cDNA, we have successfully expressed a variety of reporter genes from the full-length genomic and various subgenomic RNAs in vitro transcribed from functional JEV cDNAS. In summary, we have developed a reverse genetics system for JEV that will greatly facilitate the research on this virus in a variety of different fields. It will also be useful as a heterologous gene expression vector and aid the development of a vaccine against JEV.

  • PDF

Biomolecular Variations in Poly and Bivoltine Strains and Their Hybrids of Bombyx mori during Embryonic Development

  • Chaudhuri, A.;Roy, G.C.;Krishnan, N.;Sengupta, A.K.;Sen, S.K.;Saratchandra, B.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.2 no.2
    • /
    • pp.129-132
    • /
    • 2001
  • Biometabolic assessment was made in early and late embryonic stage (just before hatching) of one poly, one bi and their hybrids (DP, YPe, DP ${\times} Ype, and YPe ${\times} DP respectively ) of Bombyx mori to observe the racial differences. Protein and nucleic acid (RNA and DNA) concentrations were recorded to be significantly higher in bivoltine breed (YPe) and also in the hybrid than the polyvoltine (DP) strain in both the stages of embryonic development. The single egg weight of polyvoltine race was lower as compared to that of bivoltine and the hybrid studied. Age specific changes in all the biomolecules were evident where protein and RNA concentrations were elevated sharply in prehatched larvae while in case of DNA it was observed to be just reverse. The differences in protein, RNA and DNA composition between breeds and hybrids reflect the racial variations in biometabolic demands responsible for differential growth and development of the breeds and hybrids.

  • PDF

Generation of FISH Probes Using Laser Microbeam Microdissection and Application to Clinical Molecular Cytogenetics

  • Shim, Sung-Han;Kyhm, Jee-Hong;Chung, Sung-Ro;Kim, Seung-Ryong;Park, Moon-Il;Lee, Chul-Hoon;Cho, Youl-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.7
    • /
    • pp.1079-1082
    • /
    • 2007
  • Chromosome microdissection and the reverse FISH technique is one of the most useful methods for the identification of structurally abnormal chromosomes. In particular, the laser microbeam microdissection (LMM) method allows rapid isolation of a target chromosome or a specific region of chromosomes without damage of genetic materials and contamination. Isolated chromosomes were directly amplified by the degenerate oligonucleotide-primed polymerase chain reaction (DOP-PCR), and then the FISH probes labeled with spectrum green- or spectrum red-dUTP were generated by nick-translation. Whole chromosome painting (WCP) probes were successfully generated from only 5 copies of the chromosome. With this method, we produced 24 WCP probes for each human chromosome. We also tried to characterize a marker chromosome, which seemed to be originated from chromosome 11 on conventional banding technique. The marker chromosomes were isolated by the LMM method and analyzed by reverse FISH. We elucidated that the marker chromosome was originated from the short arm of chromosome 5 ($5p11{\to}pter$). A fully automated and computer-controlled LMM method is a very simple laboratory procedure, and enables rapid and precise characterization of various chromosome abnormalities.