• Title/Summary/Keyword: Reverse arrangements test

Search Result 4, Processing Time 0.021 seconds

The Effect of the Signal Stationarity on the EMG Frequency Analysis (허리 근육의 근전도 신호 안정성이 주파수 분석에 미치는 영향)

  • Cho, Young-Jin;Kim, Jung-Yong
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.2
    • /
    • pp.183-188
    • /
    • 2010
  • The purpose of this study is to investigate the stationarity of the electromyographic signal in various flexion angles, loads, and window sizes, which influence the result of the mean power frequency (MPF) and median frequency (MNF) analysis. Six healthy subjects participated in the experiment. They were tested in the combination of 3-level flexion angles (0 degree, 22.5 degree, 45 degree) and 3-level loads (0Nm, 30Nm, 60Nm). Electromyographic data were collected for 20 seconds during isometric contraction. The stationarity of collected data were analyzed with four different window sizes including 250, 500, 1000 and 2000ms. Two test methods for stationarity such as Reverse Arrangements Test and Modified Reverse Arrangements Test were used. In order to show the effect of nonstationarity, the increasing/decreasing trend of MPF and MNF trend were discussed. In results, the stationarity of the electromyographic signal decreased as flexion angle increased and load decreased while window size decreased based on Reverse Arrangements Test. The highest stationarity was shown at 500 ms window in Modified Reverse Arrangements Test. The inclination of MNF and MPF indicated 3.6-6.3%, 3.8-5.1% discrepancy compared to the result from stationary data.

Effects of Segmentation Size on the Stationarity of Electromyographic Signal in Runs Test (런 검정을 사용한 근전도 신호의 안정성 평가 시 분할 크기가 신호의 안정성에 미치는 영향)

  • Cho, Young-Jin;Kim, Jung-Yong
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.667-671
    • /
    • 2010
  • Runs test is a mathematical tool to test the stationarity of electromyographic (EMG) signals. The purpose of this study is to investigate the effects of segmentation size on the stationarity of EMG signals in runs test. Six subjects participated in this experiment and performed isometric trunk exertions for twenty seconds at the load level of 25% and 50% MVC. The signals extracted from the erector spinae muscles were divided into the intervals of 1000ms and the stationarity of the signal in each interval was tested by the runs test. In this test, seven segmentation sizes such as 1.0, 2.0, 3.9, 7.8, 15.6, 31.3 and 62.5ms were applied. Additionally, two stationarity tests of reverse arrangements test and modified reverse arrangements test were used to verify the results of the runs test. In results, the segmentation size of 62.5ms showed the similar results with the other stationarity tests. However, the stationarity values among there tests were different each other when segmentation sizes other than 62.5ms were used. These results indicated the effect of segmentation size in runs test that needs to be considered to have consistent and sensitive result in stationarity test.

An Accurate Analysis for Sandwich Steel Beams with Graded Corrugated Core Under Dynamic Impulse

  • Rokaya, Asmita;Kim, Jeongho
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1541-1559
    • /
    • 2018
  • This paper addresses the dynamic loading characteristics of the shock tube onto sandwich steel beams as an efficient and accurate alternative to time consuming and complicated fluid structure interaction using finite element modeling. The corrugated sandwich steel beam consists of top and bottom flat substrates of steel 1018 and corrugated cores of steel 1008. The corrugated core layers are arranged with non-uniform thicknesses thus making sandwich beam graded. This sandwich beam is analogous to a steel beam with web and flanges. Substrates correspond to flanges and cores to web. The stress-strain relations of steel 1018 at high strain rates are measured using the split-Hopkinson pressure. Both carbon steels are assumed to follow bilinear strain hardening and strain rate-dependence. The present finite element modeling procedure with an improved dynamic impulse loading assumption is validated with a set of shock tube experiments, and it provides excellent correlation based on Russell error estimation with the test results. Four corrugated graded steel core arrangements are taken into account for core design parameters in order to maximize mitigation of blast load effects onto the structure. In addition, numerical study of four corrugated steel core placed in a reverse order is done using the validated finite element model. The dynamic behavior of the reversed steel core arrangement is compared with the normal core arrangement for deflections, contact force between support and specimen and plastic energy absorption.

Seismic resistance of exterior beam-column joints with non-conventional confinement reinforcement detailing

  • Bindhu, K.R.;Jaya, K.P.;Manicka Selvam, V.K.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.6
    • /
    • pp.733-761
    • /
    • 2008
  • The failure of reinforced concrete structures in recent earthquakes caused concern about the performance of beam column joints. Confinement of joint is one of the ways to improve the performance of beam column joints during earthquakes. This paper describes an experimental study of exterior beam-column joints with two non-conventional reinforcement arrangements. One exterior beam-column joint of a six story building in seismic zone III of India was designed for earthquake loading. The transverse reinforcement of the joint assemblages were detailed as per IS 13920:1993 and IS 456:2000 respectively. The proposed nonconventional reinforcement was provided in the form of diagonal reinforcement on the faces of the joint, as a replacement of stirrups in the joint region for joints detailed as per IS 13920 and as additional reinforcement for joints detailed as per IS 456. These newly proposed detailing have the basic advantage of reducing the reinforcement congestion at the joint region. In order to study and compare the performance of joint with different detailing, four types of one-third scale specimens were cast (two numbers in each type). The main objective of the present study is to investigate the effectiveness of the proposed reinforcement detailing. All the specimens were tested under reverse cyclic loading, with appropriate axial load. From the test results, it was found that the beam-column joint having confining reinforcement as per IS: 456 with nonconventional detailing performed well. Test results indicate that the non-conventionally detailed specimens, Type 2 and Type 4 have an improvement in average ductility of 16% and 119% than their conventionally detailed counter parts (Type1 and Type 3). Further, the joint shear capacity of the Type 2 and Type 4 specimens are improved by 8.4% and 15.6% than the corresponding specimens of Type 1 and Type 3 respectively. The present study proposes a closed form expression to compute the yield and ultimate load of the system. This is accomplished using the theory of statics and the failure pattern observed during testing. Good correlation is found between the theoretical and experimental results.